аппарат узи история создания

Ультразвук: шаг в медицину

аппарат узи история создания. Смотреть фото аппарат узи история создания. Смотреть картинку аппарат узи история создания. Картинка про аппарат узи история создания. Фото аппарат узи история создания

Сегодня сложно представить медицинскую диагностику без такого метода, как ультразвуковое исследование. Появившись в середине прошлого века, УЗИ-сканеры произвели настоящую революцию в медицине. Ультразвуковая диагностика продолжает активно развиваться. На смену обычной двухмерной картинке приходят новые технологии. Недавно первый отечественный УЗИ-сканер экспертного класса производства «Калугаприбор» концерна «Автоматика» представил холдинг «Швабе», отвечающий за маркетинговую стратегию и продажи этого оборудования.

О том, что такое ультразвук, как появились УЗИ-сканеры и о новейшей технологии 5D в ультразвуковом исследовании – в нашем материале.

На ультразвуковой волне

Многие помнят определение звука из школьного учебника по физике: «Звуковыми волнами или просто звуком принято называть волны, воспринимаемые человеческим ухом». Таким образом, диапазон звуковых волн лежит в пределах от 20 Гц до 20 кГц. Звуки именно такой частоты способен слышать человек. Волны с частотой менее 20 Гц называются инфразвуком, а с частотой выше 20 кГц – ультразвуком.

В то время как человеку инфразвук и ультразвук недоступны, многие живые существа вполне нормально общаются в этих частотах. Например, слон различает звук частотой от 1 Гц, а в верхнем пределе слышимости лидируют дельфины – максимум слухового восприятия у них доходит до 150 кГц. Кстати, ультразвук вполне способны уловить собаки и кошки. Собака может слышать звук до 70 кГц, а верхний порог звукового диапазона у кошек равен 30 Гц.

Если для некоторых животных ультразвук – обычный способ общения, то людям о наличии в природе «невидимых» звуковых волн лишь приходилось догадываться. Опыты в этой сфере проводил еще Леонардо да Винчи в XV веке. Но открыл ультразвук в 1794 году итальянец Ладзаро Спалланцани, доказав, что летучая мышь с заткнутыми ушами перестает ориентироваться в пространстве.

УЗИ: физические основы

В XIX веке ультразвук произвел настоящий бум в научной среде, стали проводиться первые научные опыты. Например, в 1822 году, погрузив в Женевское озеро подводный колокол, удалось вычислить скорость звука в воде, что предопределило рождение гидроакустики.

Ближе к концу века, в 1890 году, учеными Пьером и Жаком Кюри было открыто физическое явление, которое вошло в основу ультразвукового исследования. Братья Кюри обнаружили пьезоэлектрический эффект. Заключается он в том, что при механической деформации некоторых кристаллов между их поверхностями возникает электрическое напряжение.

аппарат узи история создания. Смотреть фото аппарат узи история создания. Смотреть картинку аппарат узи история создания. Картинка про аппарат узи история создания. Фото аппарат узи история создания
Пьер Кюри и кварцевый пьезоэлектрометр

На основе таких пьезокерамических материалов и создается главный компонент любого УЗИ-оборудования – преобразователь, или датчик, ультразвука. На пьезоэлементы подается ток, который преобразуется в механические колебания с излучением ультразвуковых волн. Пучок ультразвуковых волн распространяется в тканях организма, часть его отражается и возвращается обратно к пьезоэлементу. Основываясь на времени прохождения волны, оценивается расстояние.

Ультразвук в медицине: от лечения артрита до диагностики

В медицине ультразвук вначале использовали как метод лечения артритов, язвенной болезни желудка, астмы. Было это в начале 30-х годов прошлого века. Считалось, что ультразвук обладает противовоспалительным, анальгезирующим, спазмолитическим действием, также усиливает проницаемость кожи. Кстати, сегодня на этом основан фонофорез – метод физиотерапии, когда вместо обычного геля для УЗИ наносится лечебное вещество, а ультразвук помогает препарату глубже проникать в ткани.

Но свое основное применение в области медицины ультразвук нашел как метод диагностики. Основателем УЗИ-диагностики считается австрийский невролог, психиатр Дьюссик. В 1947 году он рассмотрел опухоль мозга, учитывая интенсивность, с которой ультразвуковая волна проходила сквозь череп пациента.

аппарат узи история создания. Смотреть фото аппарат узи история создания. Смотреть картинку аппарат узи история создания. Картинка про аппарат узи история создания. Фото аппарат узи история созданияНастоящий прорыв в развитии ультразвуковой диагностики произошел в 1949 году, когда в США был создан первый аппарат для медицинского сканирования. Это устройство мало чем напоминало современные УЗИ-сканеры. Оно представляло собой резервуар с жидкостью, в которую помещался пациент, вынужденный долгое время сидеть неподвижно, пока вокруг него передвигался сканер брюшной полости – сомаскоп. Но начало было положено. УЗИ-сканеры совершенствовались очень стремительно, и к середине 60-х годов они стали приобретать привычный вид с мануальными датчиками.

Благодаря развитию микропроцессорной технологии в течение 1980-1990-х годов качество УЗИ намного улучшилось. В это время ультразвуковую диагностику стали активно применять в различных областях медицины, оценив ее безвредность по сравнению с рентгеновскими лучами и простотой использования в сравнении с магнитно-резонансной томографией. Особо широкое применение ультразвук нашел в акушерстве и гинекологии. Уже в конце 1990-х годов во многих странах УЗИ стало стандартным исследованием, с помощью которого определяли срок беременности, выявляли пороки развития плода.

Взгляд изнутри: современные технологии в УЗИ

Сегодня отечественное здравоохранение закупает у зарубежных поставщиков порядка 3 тысяч УЗИ-сканеров в год. Дело в том, что до последнего времени такие устройства не выпускались серийно в России.

Эксперименты по применению ультразвука проводились и у нас в стране. В 1954 году в институте акустики Академии наук СССР даже появилось специализированное отделение, а в 1960-е годы был налажен выпуск отечественных УЗИ-сканеров. Но все они так и остались в статусе экспериментальных, не получили массового применения на практике, а к 1990-м годам и вовсе были замещены импортными аналогами.

В прошлом году Ростех в рамках программы импортозамещения наладил серийное производство российских УЗИ-сканеров – «РуСкан 50» и «РуСкан 60» на мощностях «Калугаприбор», входящего в концерн «Автоматика». Они относятся к среднему и высокому классу, в них применяются новейшие технологии, такие как 3D/4D-изображение, а также эластография, то есть УЗИ с применением дополнительного фактора – давления, помогающего по характеру сокращения тканей определять патологические изменения.

Методы ультразвуковой диагностики продолжают активно развиваться. В этом году к производственной линейке Ростех добавил аппараты экспертного класса. Госкорпорация представила новинку на форуме БИОТЕХМЕД – «РуСкан 65М» в рамках экспозиции холдинга «Швабе», который реализует маркетинговую стратегию и осуществляет продажи изделия. Это первый отечественный УЗИ-сканер экспертного класса.

аппарат узи история создания. Смотреть фото аппарат узи история создания. Смотреть картинку аппарат узи история создания. Картинка про аппарат узи история создания. Фото аппарат узи история создания

Что означает определение «экспертный» в классификации УЗИ-сканеров? Основной критерий – это разрешающая способность. Здесь используются высокоплотные датчики, способные различать мельчайшие детали структур. Как упоминалось выше, каждый преобразователь имеет определенный набор пьезоэлементов. В аппаратах недорогого класса плотность этих элементов невысока. Чем больше плотность, тем более точной и достоверной будет диагностика.

Второй, не менее важный критерий – какой набор программ заложен в данном оборудовании. Для того чтобы обеспечивать высокий уровень исследования, как правило, применяют очень дорогие пакеты программного обеспечения. Это позволяет визуализировать наиболее тонкие детали, изменения структур органов, сосудов и тканей. Кстати, в «РуСкан 65М» программное обеспечение – российского производства.

аппарат узи история создания. Смотреть фото аппарат узи история создания. Смотреть картинку аппарат узи история создания. Картинка про аппарат узи история создания. Фото аппарат узи история создания

В новом изделии не только улучшено качество получаемого изображения, но и внедрены автоматизированные методы его обработки и анализа. Так, визуальную оценку плода осуществляет программа реконструкции полупрозрачного 3D УЗИ Crystal Vue, которая за счет усиления визуализации одновременно наружных и внутренних структур в одном реконструированном трехмерном изображении позволяет увеличить информативность и диагностическую достоверность исследования за счет повышения контрастности и подсветки внутренних структур дополняет объемное изображение морфологической информацией об объекте исследования, повышая точность диагностики. Среди других технологий новинки – программа автоматического анализа образований молочной железы S-Detect Breast. Еще одна функция изделия – фантастическая 5D Heart Color, которая реконструирует девять проекций сердца плода с одновременным отображением кровотока. Полученные данные позволяют наиболее детально оценить сердце на предмет врожденных патологий.

Таким образом, в течение нескольких десятилетий применение УЗИ в медицине претерпело огромные изменения, особенно в акушерстве: от простого измерения размеров плода до детальной оценки его кровотока и внутренних органов. То, что было технически невозможно еще совсем недавно, сегодня превращается в привычную составляющую рутинного ультразвукового исследования.

Источник

История развития ультразвуковой диагностики

Современным пациентам сложно представить, что ещё не так давно медики обходились без такого метода диагностики, как ультразвуковое исследование. Ультразвук произвёл настоящую революцию в медицине, наделив врачей высокоинформативным и безопасным способом обследования пациентов.

Всего за каких-то полвека, которые насчитывает история ультразвуковой медицины, УЗИ стало главным помощником в диагностике большинства заболеваний. Как же появился и развивался этот метод?

Первые исследования ультразвуковых волн

О наличии в природе звуковых волн, не воспринимаемых человеком, люди догадывались давно, но открыл «невидимые лучи» итальянец Л. Спалланцани в 1794 г., доказав, что летучая мышь с заткнутыми ушами перестаёт ориентироваться в пространстве.

Первые научные опыты с ультразвуком стали проводиться еще в XIX в. Швейцарскому учёному Д. Колладену в 1822 г. удалось вычислить скорость звука в воде, погружая в Женевское озеро подводный колокол, и это событие предопределило рождение гидроакустики.

В 1880 году братья Кюри обнаружили пьезоэлектрический эффект, возникающий в кварцевом кристалле при механическом воздействии, а спустя 2 года был сгенерирован и обратный пьезоэффект. Это открытие легло в основу создания из пьезоэлементов преобразователя ультразвука – главного компонента любого УЗ-оборудования.

XX век: гидроакустика и металлодетекция

Начало XX века ознаменовалось развитием гидролокации – обнаружения объектов под водой при помощи эха. Созданием первых эхолотов мы обязаны сразу нескольким учёным из разных стран: австрийцу Э. Бэму, англичанину Л. Ричардсону, американцу Р. Фессендену. Благодаря гидролокаторам, сканировавшим морские глубины, стало возможным находить подводные препятствия, затонувшие корабли, а в годы I мировой войны – вражеские субмарины.

Еще одним ультразвуковым направлением стало создание в начале 30-х годов дефектоскопов для поиска изъянов в металлических конструкциях. Своё место УЗ-металлодетекция нашла в промышленности. Одним из основателей данного метода стал российский учёный С.Я. Соколов.

Методы эхолокации и металлодетекции заложили фундамент для первых экспериментов с живыми организмами, которые и проводились приборами промышленного назначения.

Ультразвук: шаг в медицину

Попытки поставить ультразвук на службу медицине относятся к 30-м годам XX века. Его свойства начали применять в физиотерапии артритов, экземы и ряда других заболеваний.

Опыты, начавшиеся в 40-е годы, были направлены уже на использование УЗ-волн в качестве инструмента диагностики новообразований. Успехов в исследованиях достиг венский психоневролог К. Дюссик, который в 1947 году представил метод, названный гиперсонографией. Доктору Дюссику удалось обнаружить опухоль мозга, замеряя интенсивность, с которой ультразвуковая волна проходила сквозь череп пациента. Именно этот учёный считается одним из родоначальников современной УЗ-диагностики.

Настоящий прорыв в развитии УЗД произошел в 1949 году, когда учёный из США Д. Хаури сконструировал первый аппарат для медицинского сканирования. Это и последующие творения Хаури мало напоминали современные приборы. Они представляли собой резервуар с жидкостью, в которую помещался пациент, вынужденный долгое время сидеть неподвижно, пока вокруг него передвигался сканер брюшной полости – сомаскоп.

Примерно в это же время американский хирург Дж. Уайлд создал портативный прибор с подвижным сканером, который выдавал в режиме реального времени визуальное изображение новообразований. Свой метод он назвал эхографией.

В последующие годы УЗИ-сканеры совершенствовались, и к середине 60-х годов они стали приобретать вид, близкий к современному оборудованию с мануальными датчиками. Тогда же западные врачи начали получать лицензии для использования в практике метода УЗД.

УЗД в советской медицине

Эксперименты по применению ультразвука проводились и советскими учеными. В 1954 году в институте акустики Академии Наук СССР появилось специализированное отделение, возглавляемое профессором Л. Розенбергом.

Выпуск отечественных УЗИ-сканеров был налажен в 60-е годы в НИИ инструментов и оборудования. Учёные создали ряд моделей, предназначенных для применения в различных медицинских сферах: кардиологии, неврологии, офтальмологии. Но все они так и остались в статусе экспериментальных и не получили «места под солнцем» в практической медицине.

К тому моменту, когда советские врачи начали проявлять интерес к ультразвуковой диагностике, им уже приходилось пользоваться плодами достижений западной науки, поскольку к 90-м годам прошлого века отечественные разработки безнадёжно устарели и отстали от времени.

Современные технологии в УЗИ

Методы ультразвуковой диагностики продолжают активно развиваться. На смену обычной двухмерной визуализации приходят новые технологии, позволяющие получать объёмную картинку, «путешествовать» внутри полостей тела, воссоздавать внешний вид плода. Например:

Источник

История УЗИ аппарата

Кто изобрел аппарат УЗИ?

Попытки использовать высокочастотные ультразвуковые волны в медицине были предприняты в 30-х годах прошлого столетия. Тогда свойства ультразвука стали применять в физиотерапии для лечения таких тяжелых заболеваний, как артрит, экзема, псориаз.

Опыты, начавшиеся в 40-е годы, были нацелены на использование ультразвука в качестве неинвазивного метода диагностики новообразований. Прорыва в исследованиях удалось добиться венскому психоневрологу К. Дюссику. Именно у него получилось диагностировать опухоль головного мозга методом замеров интенсивности ультразвуковых волн, проходящих сквозь череп пациента. Именно доктор Дюссик считается одним из родоначальников современной УЗ-диагностики.

Первый аппарат УЗИ в мире

Сопутствующие Товары

аппарат узи история создания. Смотреть фото аппарат узи история создания. Смотреть картинку аппарат узи история создания. Картинка про аппарат узи история создания. Фото аппарат узи история создания

УЗИ аппарат GE INVENIA ABUS 2.0

УЗИ аппарат GE INVENIA ABUS 2.0

аппарат узи история создания. Смотреть фото аппарат узи история создания. Смотреть картинку аппарат узи история создания. Картинка про аппарат узи история создания. Фото аппарат узи история создания

УЗИ аппарат GE LOGIQ e

УЗИ аппарат GE LOGIQ e

Первый ультразвуковой диагностический сканер был создан в 1949 году американским ученым Дугласом Хоури. Первый сканер мало чем напоминал современные эргономичные, мобильные ультразвуковые аппараты. Он представлял собой большой резервуар, наполненный жидкостью, куда помещался пациент. Для получения достоверных данных больной вынужден был долгое время сидеть неподвижно, пока аппарат проводит сканирование.

В это же время американский хирург Дж. Уайлд создал первый портативный аппарат с подвижным сканером, который выдавал в режиме реального времени визуальное изображение новообразований. Свой метод ученый назвал эхографией.

В последующие годы ультразвуковые аппараты совершенствовались, ведь медицинские технологии не стоят на месте, стараясь идти в ногу со временем. В середине 60-х годов сканеры становились более функциональными и точными. Методы УЗ-диагностики не перестают развиваться по сей день. На смену простой двухмерной визуализации пришли новые технологии, которые широко применяются практически в каждой отрасли медицины:

трехмерное и четырехмерное УЗИ;

Если вы хотите купить УЗИ Аппарат то обязательно обратите внимание на наши каталоги:

Первый аппарат УЗИ в России

Исследования по использованию ультразвука в медицине также проводилось также в Советском Союзе. В 1954 году на базе Акустического института АН СССР было создано отделение ультразвука, которым руководил профессор Л. Розенберг. Первый аппарат УЗИ СССР появился в 60-х годах в НИИ инструментов и оборудования. Учеными было создано несколько моделей, которые планировалось использовать в различных отраслях медицины:

Однако все отечественные модели так и остались в статусе экспериментальных, и в дальнейшей медицинской практике они не использовались. К тому моменту, когда ученые СССР начали интересоваться методами ультразвуковой диагностики, им приходилось пользоваться оборудованием, которое было создано западными коллегами-медиками. Дело в том, что когда появились аппараты УЗИ в СССР, разработанные советскими учеными, их усовершенствованию и продвижению уделялось мало внимания. Поэтому к 90-м годам прошлого века отечественные разработки морально устарели и на десятилетия отстали от выдвигаемых требований.

Отличия первых УЗИ-аппаратов от современных

Когда появились аппараты УЗИ, внешне и функционально они мало напоминали современные ультразвуковые сканеру. В то время еще не было компьютеров, которые могли бы преобразовать УЗ-сигналы в изображения, поэтому ученые использовали фотокамеру с открытым затвором. С ее помощью делалось несколько снимков, из которых вопследствии формировалось окончательное изображение.

Методы ультразвуковой диагностики и по сегодняшний день активно развиваются. Вместо обычной двухмерной визуализации врач имеет возможность получать качественное объемное изображение, детально исследовать внутренние органы, обнаруживать серьезные патологии на самых ранних стадиях развития.

Современные технологии УЗИ превзошли все ожидания пользователей. По сравнению с первыми диагностическими устройствами они отличаются:

Многофункциональностью. Ультразвуковые системы экспертного класса позволяют исследовать практически весь организм пациента и обнаруживать любые заболевания на самых ранних стадиях развития. Новые УЗИ-аппараты оснащены множеством полезных функций, которые существенно облегчают задачи врача-диагноста и обеспечивают экспертное обследование, максимально достоверные результаты.

Использованием продвинутых технологий. Современная ультразвуковая аппаратура изготавливается на базе передовых технологий и инновационных разработок. Для качественной диагностики и визуализации системы оснащены новейшим программным обеспечением, которое постоянно усовершенствуется и обновляется.

Возможностью использовать большое количество датчиков. Для более четкой, качественной, детализированной визуализации создано огромное количество различных датчиков: конвексные, микроконвексные, линейные, секторальные, фазированные, внутриполостные, биплановые, 3D / 4D (Live-3D)-датчики. К одной системе может подключаться несколько разновидностей датчиков, делая ее более эффективной в плане расширенной диагностики.

Современным дизайном, компактностью, эргономичностью. По эргономике различают 2 вида УЗИ-аппаратов: стационарные и портативные. Первые будет находиться в диагностическом кабинете и перемещаться при необходимости по территории медицинского учреждения. Портативный ультразвуковой сканер может использоваться как в медицинском учреждении, так и за его пределами, например, во время вызова на дом или выезда на место происшествия.

Высоким качеством визуализации. Для более высокого качества визуализации мелких деталей современные ультразвуковые сканеры оснащены высококачественным монитором, где можно увидеть малейшие изменения тканей исследуемого органа.

Как видим, самые первые аппараты УЗИ отличались примитивностью и сложностями в эксплуатации. Современные сканеры оснащены продвинутым ПО, различными полезными функциями и опциями, которые существенно упрощают рутинную работу врача-диагноста, при этом обеспечивают высочайшее качество визуализации и максимально точные диагностические данные.

Источник

История УЗИ

аппарат узи история создания. Смотреть фото аппарат узи история создания. Смотреть картинку аппарат узи история создания. Картинка про аппарат узи история создания. Фото аппарат узи история создания

Прежде чем рассказать об истории появления ультразвукового исследования, нужно упомянуть два важнейших открытия, без которых этого метода не было бы.

Первым нужно вспомнить выдающегося итальянского естествоиспытателя и натуралиста Ладзаро Спалланцани, жившего в XVIII веке. Как и многие ученые того времени, он был весьма многосторонен: заложил основы современной метеорологии и вулканологии, провел процедуру ЭКО у лягушек и искусственного осеменения у собак. Кроме того, Спалланцани показал, что, если заткнуть летучей мыши уши, она не сможет ориентироваться в пространстве. Ученый предположил, что рукокрылые животные испускают некий не слышимый нами звук, улавливают его эхо и на основании этого ориентируются в пространстве. Так был открыт ультразвук.

Второе открытие было сделано человеком, прославившимся своей женой и исследованием радиоактивности, — нобелевским лауреатом Пьером Кюри. В 1880 году вместе со своим старшим братом Жаком он открыл эффект возникновения электричества в кристаллах, которые сжимаются, — пьезоэлектрический эффект. Именно он является основой детекторов ультразвука в аппаратах УЗИ.

Дальше пришлось ждать 1941 года, когда австрийский невролог Карл Фредерик Дюссик в сотрудничестве со своим братом Фредериком сделал первое ультразвуковое исследование мозга. Дюссик «обнаружил» опухоль и в 1947 году опубликовал свой метод под названием гиперфонографии. Правда, через пять лет оказалось, что Дюссик принял за опухоль отражение ультразвука от костей черепа.

Англичанин Джон Уайлд первым использовал УЗИ для определения толщины тканей кишечника в 1949 году. За эту работу его назвали «отцом медицинского УЗИ». Впрочем, «отцов УЗИ» было много. Как и вариантов ранних аппаратов: для некоторых исследований человека погружали в ванну с водой, для других — на несколько часов прижимали к пластиковой кювете. Было и много пионерских работ. Так, в 1958 году впервые при помощи УЗИ определили размер головки плода, чем положили начало акушерскому применению ультразвука.

Первый же современный аппарат, в котором сканер и приемник ультразвука находились в руке врача, появился в 1963 году в США. С тех пор началась эпоха современного УЗИ. Медицинскую аккредитацию на такие исследования стал выдавать с 1967 года Американский институт ультразвуковой медицины (AIUM): чтобы получить разрешение на практику, врачу-гинекологу (а первые клинические применения начались именно в акушерстве и гинекологии) приходилось выполнять не менее 170 исследований в год. Увы, СССР в этом сильно отставал: несмотря на первые диагностические опыты, выполненные еще в 1960 году, в практику советской медицины УЗИ стало внедряться лишь в конце 1980-х годов.

О том, каким было первое оборудование для УЗИ, как оно развивалось, а также какие возможности исследования внутренних органов этот метод диагностики предлагает сейчас, рассказал Николай Кульберг, руководитель отдела разработки средств медицинской визуализации ГБУЗ «Научно-практический центр медицинской радиологии ДЗМ», кандидат физико-математических наук.

Первые ультразвуковые диагностические приборы появились в середине ХХ века. По современной классификации их можно было назвать 1D-УЗИ. Это значит, что на выходе врач получал не «картинку» исследуемого органа, а график, похожий на тот, что получается при работе сейсмографа. Такой тип визуализации данных называется «А-режимом», или «А-scan ultrasonography».

аппарат узи история создания. Смотреть фото аппарат узи история создания. Смотреть картинку аппарат узи история создания. Картинка про аппарат узи история создания. Фото аппарат узи история создания
Интенсивность ультразвука, измеренного на разных глубинах тканей
Николай Кульберг

Датчик прибора по форме напоминал карандаш, а на торце «карандаша» находился плоский пьезокерамический чувствительный элемент. Приложив этот элемент к телу пациента, можно было получить информацию о столбике тканей по направлению датчика. Результат исследования (А-линия, A-Line) отображался на экране осциллографа примерно так, как это показано выше. Впрочем, даже такие невыразительные, абстрактные графики могли дать врачу очень важные диагностические сведения: например, на данном рисунке видно, как измеряется интенсивность ультразвука, отраженного на разных глубинах тканей. Так, на глубинах от 0 до 3 см звук отражается хорошо, кроме того, отражающие слои есть и на глубинах 5 и 6 см. Соответственно, зная строение исследуемого органа, врач может предполагать, от чего именно отражается ультразвук.

В 70-е годы ХХ века в конструкцию «одномерного» датчика было внесено важное изменение: теперь чувствительный элемент можно было поворачивать с помощью шагового электродвигателя, так как он был закреплен на шарнире. Вращение происходило внутри небольшой буферной камеры, заполненной жидкостью. Эту камеру прикладывали к телу пациента. Вращающийся датчик получал последовательно информацию из веерообразно расходящихся «лучей». Если полученные яркости отобразить на экране монитора, можно было получить двухмерное изображение тканей пациента, находящихся в одной плоскости. Данный метод исследования стали называть 2D-УЗИ, но более традиционно такую визуализацию называют «B-режим» (B-scan ultrasonography). Пример изображения внутреннего органа (левой почки) в В-режиме показан ниже. Если провести вертикальную линию по оси симметрии этого рисунка и построить график, то в результате получится линия, показанная на предыдущем рисунке (А-режим).

аппарат узи история создания. Смотреть фото аппарат узи история создания. Смотреть картинку аппарат узи история создания. Картинка про аппарат узи история создания. Фото аппарат узи история создания
УЗИ левой почки
Николай Кульберг

Через некоторое время конструкция датчиков для двухмерного УЗИ была значительно усовершенствована. Вместо вращающейся головки научились применять так называемые фазированные датчики: поверхность такого датчика состоит из нескольких десятков или сотен элементов, каждый из которых излучает и принимает ультразвук отдельно от других. Здесь для изменения направления луча двигать ничего не надо — все управление осуществляется с помощью подачи электрических импульсов на разные элементы датчика с разными задержками. Сигналы, принятые разными элементами, также обрабатываются отдельно друг от друга. Благодаря этому получаются очень качественные B-изображения.

На этом принципе работает большинство современных ультразвуковых приборов. Основные типы датчиков: линейный, конвексный, секторный — представляют собой различные варианты фазированных решеток.

Тайна третьего измерения

Но если можно, пользуясь фазированным датчиком, отклонять луч в пределах одной плоскости, почему бы не сделать то же самое для перпендикулярной плоскости? Это и будет означать переход к третьему измерению. Этот переход произошел на рубеже 1990-х и 2000-х годов. Но здесь разработчики приборов УЗИ столкнулись со значительными техническими трудностями.

Представим, что для сканирования в одной плоскости требуется разделить датчик на 100 элементов. Сколько элементов понадобится для сканирования по еще одному измерению? Оказывается, 1002, то есть десять тысяч. К каждому такому элементу нужно подвести отдельный провод. Получится кабель такой толщины, что врач просто не сможет удержать его в руке.

Оценив эту трудность, разработчики на первых порах отказались от внедрения в практику двухмерных фазированных датчиков и пошли по хорошо известному пути механического сканирования. Снова в составе «флагманских» моделей приборов появились шарниры и шаговые двигатели, на которых вращался уже сложный фазированный датчик. Сканирование в одной плоскости было электронным, в другой — механическим. Такие датчики до сих пор можно встретить, они продаются в том числе и с новыми приборами.

Когда первый трехмерный датчик стал реальностью, обнаружилась еще одна трудность, связанная со временем получения одного объемного изображения. Скорость звука в теле человека примерно 1,5х105 см/с. Чтобы получить данные с глубины 15 см, приходится ждать 0,0002 секунды. На первый взгляд, это совсем немного. Тем не менее, когда мы переходим к двухмерному сканированию, нужно сделать порядка сотни таких одномерных сканов. Таким образом, один кадр B-изображения можно получить за две сотых секунды, то есть частота кадров будет не более пятидесяти кадров в секунду. А чтобы получить сотню B-сканов, нужных для построения объема, придется ждать уже две секунды. Повышение скорости сканирования стало предметом напряженных изысканий разработчиков во всем мире. Так, пользуясь электронным сканированием только по одной координате удалось повысить скорость сканирования примерно в десять раз за счет так называемого многолучевого сканирования, получаемая при этом частота составляла 5 объемов в секунду. Это было уже полноценное 3D-УЗИ, ведь, пользуясь этим способом, можно получать реалистичные трехмерные изображения. На рисунке ниже показан пример трехмерной реконструкции плода.

аппарат узи история создания. Смотреть фото аппарат узи история создания. Смотреть картинку аппарат узи история создания. Картинка про аппарат узи история создания. Фото аппарат узи история создания

Пример трехмерной реконструкции плода
ginekology-md.ru

Спасти ситуацию помогли двухмерные фазированные датчики. Чтобы уменьшить число проводов в кабеле датчика, внутрь самого датчика поместили целый высокопроизводительный компьютер, который «сжимает» полученные данные и пересылает их в закодированном виде по относительно тонкому кабелю. Благодаря этому удается получать частоту несколько десятков «объемов» в секунду. А этого уже достаточно, например, для полноценной визуализации сердца в реальном времени. Поскольку к трем пространственным измерениям добавляется полноценное четвертое, время, эти технологии получили название 4D-УЗИ. С их помощью можно строить полноценное изображение клапанов сердца в режиме реального времени. Его примери приведен ниже.

Сегодня процедура ультразвукового исследования, в том числе в формате 3D и 4D, проводится достаточно быстро и эффективно: внутренние органы можно увидеть с разрешением менее миллиметра. «Разрешение УЗИ системы зависит от рабочей частоты датчика и глубины, на которой находится исследуемый орган, — рассказывает Николай Кульберг. — Для абдоминальных исследований на частоте 3,5 МГц разрешение на средней глубине десять сантиметров составляет примерно три миллиметра. Для щитовидной железы датчик частотой 7,5 МГц может дать разрешение порядка полумиллиметра на глубине три сантиметра. Кардиодатчик на частоте 3 МГц и на глубине десять сантиметров покажет разрешение пять миллиметров». Что касается скорости получения изображений, то современные УЗИ-аппараты позволяют делать это за считанные минуты.

аппарат узи история создания. Смотреть фото аппарат узи история создания. Смотреть картинку аппарат узи история создания. Картинка про аппарат узи история создания. Фото аппарат узи история создания

«На современных УЗ-аппаратах Philips c технологией xMATRIX получить 3D/4D изображение можно за 2-4 секунды, на приборах с механическими датчиками — за 10-14 секунд. Поиск удобной области сканирования, обработка полученных результатов и экспорт изображений занимают дополнительное время, таким образом, исследование может длиться до 20-30 минут», — рассказала Евгения Добрякова, старший специалист подразделения Philips «Ультразвуковые системы».

Впрочем, несмотря на все успехи в развитии УЗИ-аппаратов, предел совершенства их работы еще не достигнут. «О путях улучшения двумя словами сказать не получится, потому что это предмет очень сложных научных изысканий в разных областях — от физики и электроники до цифровой обработки сигналов. Здесь постоянно трудятся тысячи исследователей, и каждый год им удается показать какие-то заметные улучшения», — рассказывает Николай Кульберг. Кроме того, разработчики продолжают совершенствовать и аппараты для двухмерного УЗИ, так как далеко не всем врачам нужна объемная картинка.

Помимо совершенствования УЗИ, перед учеными стоят и иные задачи. «Сейчас на повестке дня исследователей во всем мире стоит вопрос создания так называемой УЗ-томографии (УЗТ) по аналогии с хорошо известной компьютерной томографией (КТ) на основе рентгеновского сканирования образца по отдельным слоям, — рассказывает Владимир Кукулин, доктор физико-математических наук, ведущий научный сотрудник отдела физики атомного ядра и главный научный сотрудник лаборатории теории атомного ядра НИИЯФ МГУ. — Создание УЗТ было бы поистине революционным шагом в медицине, сейсмологии и в других сферах, так как позволило бы заменить во многих случаях нежелательное рентгеновское облучение тела, причем многократное, на простое и совершенно безвредное УЗ-сканирование. Однако развитие УЗТ требует очень большого объема вычислений, которые нужно произвести за относительно небольшое время медицинского обследования пациента. Сделать это можно, только применив принципиально новую технологию вычислений на основе сверхбыстрого графического процессора. Эти работы сейчас только разворачиваются.

Второе чрезвычайно интересное новое направление — технология уничтожения опухолей и разрезания внутренних тканей тела с помощью направленного ультразвука. Это направление сейчас формируется под названием хирургии XXI века».

Авторы: Алексей Паевский, Яна Хлюстова

Следить за обновлениями нашего блога можно и через его страничку в фейсбуке и паблик
вконтакте

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *