атомная энергетика ссср история

Цепная реакция

Советские ученые создали первую атомную электростанцию. Она изменила мир

Когда в 1950-х годах Советский Союз начал строить первую атомную электростанцию, мало кто представлял, насколько она изменит жизнь людей, промышленность, науку и медицину. В наши дни атомные технологии дают не только экологичный и безопасный источник электроэнергии, но позволяют покорять безлюдные территории вечной мерзлоты, осваивать космос и спасать жизни миллионов людей. «Лента.ру» рассказывает о том, как первая атомная электростанция повлияла на мир и почему эта отрасль имеет исключительное значение для России.

Секретный завод

Советская атомная промышленность ведет отсчет своего рождения от 20 августа 1945 года, когда Государственный комитет обороны СССР принял решение о создании Первого Главного Управления для руководства всеми работами по урану. Причем еще до начала испытаний атомной бомбы советские ученые задумались о мирном применении атомной энергии и начали исследовать возможность строительства электростанции на ядерном топливе.

атомная энергетика ссср история. Смотреть фото атомная энергетика ссср история. Смотреть картинку атомная энергетика ссср история. Картинка про атомная энергетика ссср история. Фото атомная энергетика ссср история

Строительство началось в 1950 году под Москвой в условиях строжайшей секретности, чтобы не привлекать внимание потенциальных противников.

По словам руководителя музейной группы отраслевого мемориального комплекса «Первая в мире АЭС» Инны Мохиревой, Сталин выделил на проект всего год, как и на другие стратегические объекты. Но даже четыре года, за которые построили Обнинскую АЭС — рекордный срок, так как опыта строительства подобных сооружений ни у кого в мире не было. При этом аналогичные разработки велись и в США — в 1951-м в городе Арко штата Айдахо создали исследовательский реактор EBR-I, вырабатывающий всего 800 ватт электроэнергии. Лабораторный опыт позволил зажечь несколько лампочек.

атомная энергетика ссср история. Смотреть фото атомная энергетика ссср история. Смотреть картинку атомная энергетика ссср история. Картинка про атомная энергетика ссср история. Фото атомная энергетика ссср история

«Все понимали, что подобные разработки интересуют конкурентов с Запада, поэтому здания станции и лаборатории возводились по типу гражданской застройки, в стиле сталинского ампира, чтобы не привлекать внимание с воздуха», — Инна Мохирева.

Привлеченным для строительства осужденным говорили, что они копают котлован под некий «секретный завод». Интересно, что параллельно со строительством АЭС в Москве возводили главный корпус МГУ, и власти отдали приоритет объекту в Обнинске, поэтому часть строителей перебросили в Калужскую область.

В результате спустя четыре года — в мае 1954 года — был запущен реактор, а в июне того же года Обнинская атомная электростанция дала первый промышленный ток в систему Мосэнерго, открыв дорогу использованию атомной энергии в мирных целях. Однако с мощностью в 5 мегаватт она не играла серьезной роли в энергообеспечении страны. Пуск первой в мире АЭС, подключенной к электросети, был стратегической задачей и впоследствии она стала базой для новейших разработок.

атомная энергетика ссср история. Смотреть фото атомная энергетика ссср история. Смотреть картинку атомная энергетика ссср история. Картинка про атомная энергетика ссср история. Фото атомная энергетика ссср история

Энергия распада ядра

В основе работы обычного ядерного реактора лежит выделение энергии при распаде радиоактивных изотопов — как правило, урана. Высвобождающиеся при распаде ядер нейтроны запускают цепной механизм реакций в соседних атомах, что обеспечивает поддержание непрерывной работы установки.

атомная энергетика ссср история. Смотреть фото атомная энергетика ссср история. Смотреть картинку атомная энергетика ссср история. Картинка про атомная энергетика ссср история. Фото атомная энергетика ссср история

атомная энергетика ссср история. Смотреть фото атомная энергетика ссср история. Смотреть картинку атомная энергетика ссср история. Картинка про атомная энергетика ссср история. Фото атомная энергетика ссср история

Только после решения оборонных задач, советские ученые получили возможность использовать ядерные технологии в мирных целях. Наиболее перспективным применение ядерных технологий считается в электроэнергетике, где мирный атом обеспечивает доступ к практически универсальному источнику энергии. Важнейшим условием развития таких технологий является безопасность.

«Лично я убежден в том, что человечество нуждается в ядерной энергии. Она должна развиваться, но при абсолютных гарантиях безопасности», — говорил академик Андрей Сахаров.

Источник

ЯДЕРНАЯ ПРОГРАММА СССР

Предыстория

Обнаружение эффекта деления атомного ядра в 1938-1939 годы открыло возможность осуществления цепной реакции, приводящей к взрыву огромной мощности. В октябре 1939 года было принято решение о создании Консультативного уранового комитета в США, в 1940 году комитет по урановой проблеме был создан в Великобритании. Работы по этой тематике велись и в Институте кайзера Вильгельма в Германии.

Работа «Урановой комиссии»

Разработка ядерного оружия

В ноябре 1945 года было принято решение по строительству комбината по производству и переработке атомного топлива (комбинат «Маяк»). Были построены реактор Ф-1 и промышленный реактор А-1. В 1947 году была создана сеть специальных факультетов для подготовки специалистов-атомщиков. В конце 1947 года в связи с болезнью Ванникова работой по обеспечению заказов атомной отрасли руководил М. Первухин.

25 декабря 1946 года в СССР заработал атомный реактор. 29 августа 1949 под Семипалатинском было произведено первое испытание советской атомной бомбы. В 1949 году Лаборатория номер 2 была переименована в Лабораторию измерительных приборов АН СССР, на основе которой в 1956 году был создан Институт атомной энергии АН СССР.

«Мирный атом»

26 июня 1953 года для развития ядерной программы было создано Министерство среднего машиностроения во главе с В. Малышевым.

Использование атомной энергии связано с большим риском, так как аварии на атомных объектах приводят к радиоактивному заражению обширной территории на сотни лет. Серьезную проблему представляет собой хранение отработанного ядерного топлива и захоронение радиоактивных отходов. 29 сентября 1957 произошла крупнейшая авария с хранилищем отходов (Кыштымская авария). В 1986 произошла Чернобыльская катастрофа. За рубежом также происходят атомные аварии: в Уиндскейл в 1957, в Три-Майл-Айленд в 1979, в Фукусиме в 2011 г. и др.

В 1980 году на советских АЭС производилось 72,9 млрд кВт∙ч из 1294 кВт∙ч общего производства электроэнергии, в 1985 году 167 млрд кВт∙ч из 1544 кВт∙ч, в 1989 г. 213 млрд кВт∙ч из 1722 кВт∙ч.

Развитие атомного флота

Развитие советской ядерной программы показало, что индустриализация СССР вышла на такой уровень, что советская промышленность в состоянии решать наиболее передовые для того времени технологические задачи. Многие задачи, имеющие первостепенное значение с военной и экономической точки зрения, были решены впервые в мире. В то же время развитие ядерной программы, особенно в первые годы, осуществлялось в условиях пренебрежения некоторыми требованиями безопасности работников и за счет напряжения всего экономического потенциала страны.

Источник

СПРАВКА: история атомной промышленности России

атомная энергетика ссср история. Смотреть фото атомная энергетика ссср история. Смотреть картинку атомная энергетика ссср история. Картинка про атомная энергетика ссср история. Фото атомная энергетика ссср историяатомная энергетика ссср история. Смотреть фото атомная энергетика ссср история. Смотреть картинку атомная энергетика ссср история. Картинка про атомная энергетика ссср история. Фото атомная энергетика ссср история

Юбилей лидеров: российская атомная отрасль отмечает 75-летие

Ниже приводится справочная информация.

20 августа 1945 года председатель Государственного комитета обороны СССР Иосиф Сталин подписал постановление о создании Специального комитета при ГКО – особого органа управления работами по урану, состоящего из высших государственных деятелей и ученых-физиков. Новый орган наделили полномочиями по привлечению любых ресурсов, имевшихся в распоряжении правительства СССР, к работам по атомному проекту. Главой Спецкомитета был назначен заместитель председателя ГКО и Совета народных комиссаров (СНК) СССР, нарком внутренних дел Лаврентий Берия. Тем же постановлением предусматривалось создание «штаба» советской атомной промышленности – Первого главного управления при СНК СССР (с 1953 года – Министерство среднего машиностроения СССР, с 1989 года – Министерство атомной энергетики и промышленности). Первым руководителем ПГУ стал народный комиссар боеприпасов Борис Ванников, который фактически стал первым руководителем отрасли.

Эти первые документы легли в основу организации новой промышленности страны – атомной. Поэтому считается, что российская атомная отрасль ведет отсчет своей истории с 20 августа 1945 года.

Куратором советской ядерной программы был назначен нарком внутренних дел Лаврентий Берия, научным руководителем – академик Игорь Курчатов. В структуру ПГУ из различных ведомств перевели более десятка предприятий, научно-исследовательских институтов (НИИ) и конструкторских бюро (КБ).

В стране началось масштабное государственное строительство атомной промышленности. В рекордные сроки построили обширную научную и производственно-техническую инфраструктуру. 9 декабря 1946 года было организовано производство урана на базе бывшего патронного завода в городе Глазов (Удмуртия). В 1948 году на этом заводе уранового производства (ныне АО «Чепецкий механический завод») получили тетрафторид урана, из которого путем черновых и рафинировочных восстановительных плавок затем произвели урановые слитки. В 1949 году на нем также было запущено параллельное производство кальция, необходимого для восстановления урана.

Осуществленная под руководством Курчатова в 1946 году в реакторе Ф-1, построенном в Москве, самоподдерживающаяся цепная реакция деления урана позволила двумя годами позже запустить на комбинате № 817 (ныне ПО «Маяк» в Озерске Челябинской области) первый промышленный реактор «А» по производству плутония мощностью 100 мегаватт. В отличие от урана, плутоний в природе не встречается.

В апреле 1946 года было подписано постановление правительства СССР об организации в поселке Сарова Мордовской АССР КБ-11 (ныне Всероссийский научно-исследовательский институт экспериментальной физики, ВНИИЭФ), главной задачей которого стали разработка конструкции, создание и испытание первой советской атомной бомбы.

Советский Союз первым в мире взял курс на мирный атом. 16 мая 1950 года вышло постановление советского правительства «О научно-исследовательских, проектных и экспериментальных работах по использованию атомной энергии для мирных целей», с которого началось активное развитие гражданского сектора атомной промышленности. Первой большой победой на этом пути стал пуск 26 июня 1954 года первой в мире атомной электростанции мощностью пять мегаватт в подмосковном Обнинске.

В 1955 году был запущен в эксплуатацию первый в мире реактор на быстрых нейтронах БР-1 с нулевой мощностью, а через год – БР-2 с тепловой мощностью 100 киловатт. В 1959 году сдали в эксплуатацию первый в мире ледоход с ядерной энергетической установкой («Ленин»).

В 1964 году был запущен первый реактор ВВЭР-1 (водо-водяной энергетический реактор) мощностью 210 мегаватт (Нововоронежская АЭС). В 1973 году ввели в эксплуатацию первый в мире энергетический реактор на быстрых нейтронах БН-350 (город Шевченко, ныне – город Актау, Казахстан). В 1974 году состоялся запуск первого реактора РБМК (реактор большой мощности канальный) мощностью 1000 мегаватт (Ленинградская АЭС). Развернулось строительство АЭС за рубежом.

Авария на Чернобыльской АЭС, произошедшая в 1986 году, затормозила развитие отечественной ядерной энергетики.

В январе 1992 года министерство атомной энергии и промышленности СССР было преобразовано в министерство Российской Федерации по атомной энергии. Ему отошло около 80% предприятий бывшего Минсредмаша СССР, девять АЭС с 28 энергоблоками. Начался процесс восстановления, в результате которого отрасль сумела в значительной степени сохранить накопленный потенциал и человеческие ресурсы.

В 2004 году министерство было упразднено, а его функции переданы Федеральному агентству по атомной энергии. В 2007 году на его на базе создали государственную корпорацию по атомной энергии «Росатом», которая теперь управляет всеми ядерными активами страны.

В настоящее время атомная отрасль России представляет собой комплекс из около 350 предприятий и организаций, в которых занято свыше 250 тысяч человек. В ее структуре – предприятия ядерного оружейного комплекса, ядерного топливного цикла, атомного машиностроения и отраслевые научно-исследовательские институты. Кроме того, в состав Росатома входит единственный в мире атомный ледокольный флот.

В современных условиях атомная энергетика является одним из важнейших секторов экономики России. Выработка в стране электроэнергии на АЭС в 2019 году составила 208,784 миллиарда киловатт в час. Атомная энергетика активно развивается. В России строится шесть энергоблоков. Кроме того, за рубежом страна сооружает 36 энергоблоков.

Атомная отрасль выступает локомотивом для развития других отраслей. Она обеспечивает заказ, а значит – и ресурс развития машиностроению, металлургии, материаловедению, геологии, строительной индустрии и так далее.

Источник

История атомной промышленности России

Исследования в области ядерной физики велись в Советском государстве еще в довоенные годы. В 1921 году Государственный ученый совет Наркомпроса учредил при Академии наук Радиевую лабораторию (позже — Радиевый институт), заведующим которой стал В.Г. Хлопин. В 1933 году в Ленинграде была проведена I Всесоюзная конференция по ядерной физике, которая дала мощный толчок дальнейшим исследованиям. В 1935 году в Радиевом институте, на первом в Европе циклотроне был получен первый пучок ускоренных протонов. В 1939 году Я.Б. Зельдович, Ю.Б. Харитон, А.И. Лейпунский обосновали возможность протекания в уране цепной ядерной реакции деления. А в сентябре 1940 года Президиумом Академии наук СССР была утверждена программа работ по изучению реакций деления урана.

В 40-е годы XX века история отечественной атомной отрасли получила развитие за счет реализации военного «атомного проекта». 28 сентября 1942 года было подписано секретное постановление Государственного комитета обороны (ГКО) №2352сс «Об организации работ по урану». В нем Академии наук СССР предписывалось «возобновить работы по исследованию осуществимости использования атомной энергии путем расщепления ядра урана и представить к 1 апреля 1943 года доклад о возможности создания урановой бомбы или уранового топлива». 12 апреля 1943 года была образована Лаборатория измерительных приборов №2 Академии наук СССР (ныне — РНЦ «Курчатовский институт»). Позже ее перевели в Москву и назначили профессора И.В. Курчатова научным руководителем работ по урану.

атомная энергетика ссср история. Смотреть фото атомная энергетика ссср история. Смотреть картинку атомная энергетика ссср история. Картинка про атомная энергетика ссср история. Фото атомная энергетика ссср история

Но важно отметить, что уже с конца 40-х годов XX века началось активное развитие гражданского сектора атомной промышленности. Еще в апреле 1949 года в ИТЭФ был запущен первый в СССР и в Европе тяжеловодный исследовательский реактор ТВР, на нем впоследствии был сделан целый ряд крупных открытий. А в мае 1950 года Правительство СССР приняло постановление « О научно-исследовательских, проектных и экспериментальных работах по использованию атомной энергии для мирных целей». Главным итогом его реализации стал пуск первой в мире атомной электростанции мощностью 5 МВт близ станции Обнинское (сейчас – Обнинск, Калужская обл.). Станция дала ток 26 июня 1954 года. Она была оснащена уран-графитовым канальным реактором с водяным теплоносителем АМ («Атом мирный») мощностью всего 5 МВт. Идеи конструкции активной зоны станции была предложена И.В. Курчатовым совместно с профессором С.М. Фейнбергом, главным конструктором стал академик Н.А. Доллежаль.

В октябре 1954 года Совет министров СССР одобрил масштабную программу строительства АЭС в период с 1956 по 1960 годы. В 1964 году был запущен первый реактор ВВЭР-1 мощностью 210 МВт (Нововоронежская АЭС). В 1973 году был введен в эксплуатацию первый в мире энергетический реактор на быстрых нейтронах БН-350 (г. Шевченко, ныне — г. Актау, Казахстан). В 1974 году состоялся запуск первого реактора РБМК мощностью 1000 МВт (Ленинградская АЭС). Было развернуто строительство АЭС в странах Восточной Европы. В период с 1957 по 1967 год в странах Восточной Европы, Азии и Африки СССР было построено 25 атомных установок, в том числе 10 реакторов АЭС, 7 ускорителей, 8 изотопных и физических лабораторий.

атомная энергетика ссср история. Смотреть фото атомная энергетика ссср история. Смотреть картинку атомная энергетика ссср история. Картинка про атомная энергетика ссср история. Фото атомная энергетика ссср история

Стоит отметить важную роль, которую сыграла II Международная конференция по мирному использованию атомной энергии в Женеве 1958 года. От СССР в ее работе приняли участие 44 академика и члена-корреспондента, 33 профессора и доктора наук, было представлено более 200 докладов. Все большие обороты набирали исследования в области мирных применений ядерных реакций. В частности, в период с 1957 по 1986 годы было построены крупные АЭС, значительное развитие получили работы по управляемому термоядерному синтезу. В 1967 году в Институте физики высоких энергий был запущен крупнейший (на тот момент) ускоритель протонов на энергию 70 миллиардов электронвольт (У-70). Его создание вывело страну в лидеры исследований в области физики высоких энергий.

С 1971 по 1992 годы на Балтийском заводе имени Серго Орджоникидзе в Ленинграде были построены атомные ледоколы «Арктика», «Сибирь», «Россия», «Советский Союз» и «Ямал». С 1982 по 1988 года на Керченском судостроительном заводе «Залив» имени Б.Е. Бутомы был создан лихтеровоз-контейнеровоз «Севморпуть». Атомные ледоколы «Таймыр» и «Вайгач» строились по заказу СССР на судостроительной верфи компании «Вяртсиля» в Финляндии с 1985 по 1989 год. При этом использовались советские оборудование (силовая установка) и сталь. «Таймыр» был принят в эксплуатацию 30 июня 1989 года, а «Вайгач» — 25 июля 1990 года.

Авария на Чернобыльской АЭС (1986 г.) затормозила развитие отечественной ядерной энергетики, и в 90-е годы XX века атомная отрасль России пережила период стагнации. В января 1992 года Министерство атомной энергии и промышленности СССР (преемник Минсредмаша) было преобразовано в Министерство Российской Федерации по атомной энергии. Ему отошло около 80% предприятий бывшего Минсредмаша СССР, 9 АЭС с 28 энергоблоками. Начался процесс восстановления, в результате которого отрасль сумела в значительной степени сохранить накопленный потенциал и человеческие ресурсы.

В феврале 2001 года состоялся физический пуск энергоблока №1 Ростовской АЭС, в декабре 2004 года был подключен к сети энергоблок №3 Калининской АЭС. А в марте 2004 года указом Президента РФ №314 было образовано Федеральное агентство по атомной энергии, его руководителем был назначен А.Ю. Румянцев. 15 ноября 2005 года распоряжением Правительства РФ на посту руководителя агентства его сменил С.В. Кириенко. Перед агентством были поставлены новые масштабные задачи. В декабре 2007 года в соответствии с Указом Президента РФ была образована Государственная корпорация по атомной энергии «Росатом» (сокращенное название — Госкорпорация «Росатом»). Госкорпорации были переданы полномочия упраздненного Федерального агентства по атомной энергии. Создание Госкорпорации «Росатом» было призвано создать новые условия для развития ядерной энергетики, усилить имеющиеся у нашей страны конкурентные преимущества на мировом рынке ядерных технологий.

В последние годы Росатом ведет активное строительство новых энергоблоков как в Российской Федерации, так и за ее пределами. 24 июня 2008 года был дан старт строительству Нововоронежской АЭС-2, 25 октября того же года началось сооружение Ленинградской АЭС-2. Обе эти атомные станции сооружаются по новому проекту «АЭС-2006» (ВВЭР-1200). В марте 2010 года завершилась достройка энергоблока №2 Ростовской АЭС, работы на котором были возобновлены в 2002 году. В декабре 2014 года состоялся энергетический пуск энергоблока №3 Ростовский АЭС, в сентябре 2015 года он был принят в промышленную эксплуатацию. Энергоблок №4 Белоярской АЭС с реактором на быстрых нейтронах БН-800 был принят в промышленную эксплуатацию 1 ноября 2016 года. Ввод в строй этого энергоблока существенно расширил топливную базу атомной энергетики, он обещает также сократить объемы радиоактивных отходов, за счёт организации замкнутого ядерно-топливного цикла. В 2018 году были сданы в промышленную эксплуатацию четвертый блок Ростовской АЭС и первый блок Ленинградской АЭС-2. Осуществлен энергетический пуск плавучей атомной теплоэнергостанции. Суммарная установленная мощность всех энергоблоков в 2019 году достигла 30,25 ГВт.

атомная энергетика ссср история. Смотреть фото атомная энергетика ссср история. Смотреть картинку атомная энергетика ссср история. Картинка про атомная энергетика ссср история. Фото атомная энергетика ссср история

В современных условиях атомная энергетика — один из важнейших секторов экономики России, который активно развивается. В стране сооружается три энергоблока. Высокое качество выпускаемой продукции и предлагаемых услуг подтверждается и успехами в международных тендерах на строительство АЭС за пределами страны. Портфель зарубежных заказов Росатома по итогам 2019 года превысил 130 млрд долларов. Сегодня Россия – мировой лидер по количеству энергоблоков, сооружаемых за рубежом: Госкорпорация «Росатом» подписала контракты на строительство за границей 36 атомных энергоблоков. В частности, ведется сооружение АЭС «Аккую» (Турция), Белорусской АЭС (Беларусь), АЭС «Куданкулам» (Индия), АЭС «Руппур» (Бангладеш), второй очереди Тяньваньской АЭС (Китай), АЭС «Ханхикиви-1» (Финляндия), АЭС «Пакш» (Венгрия).

Динамичное развитие атомной отрасли является одним из основных условий обеспечения энергонезависимости России и стабильного роста экономики страны. Стратегия деятельности Госкорпорации «Росатом» на период до 2030 года предполагает, что развитие ядерной энергетики будет осуществляться на основе долгосрочной политики с освоением и развитием ядерных энергетических технологий нового поколения, включая реакторы на быстрых нейтронах и технологии замкнутого ядерного топливного цикла, а также с увеличением экспортного потенциала российских ядерных технологий (строительство атомных электростанций, услуг по обогащению урана, ядерного топлива и др.). Атомная отрасль выступает локомотивом для развития других отраслей. Она обеспечивает заказ, а значит — и ресурс развития машиностроению, металлургии, материаловедению, геологии, строительной индустрии и т.д.

В 2020 году атомная промышленность России отмечает 75-летний юбилей. Основные праздничные мероприятия пройдут с мая до декабря. В частности, запланировано открыть памятники и мемориальные доски руководителям атомной отрасли (Е.П. Славскому, М.Г. Первухину, А.П. Завенягину и др.). Готовятся к публикации несколько книг, посвященных истории отрасли. Состоятся премьерные показы художественных и документальных фильмов на федеральных телеканалах. А в 2021 году на ВДНХ будет заново открыт павильон «Атомная энергия».

Источник

Ядерное наследие первенца атомной энергетики СССР

В 1954 году в СССР, в Обнинске, построили и запустили Первую в мире атомную станцию. Ее реактор АМ (Атом мирный) был небольшой мощности, вся станция выдавала всего 5 МВт электроэнергии, но ее запуск положил начало освоению мирной атомной энергии. Через 4 года, в 1958 г., был введён в эксплуатацию первый энергоблок Сибирской атомной электростанции мощностью 100 МВт, на Сибирском химическом комбинате. Однако, эта станция была двойного назначения. Ее реактор ЭИ-2 стали использовать для производства электроэнергии и тепла, но основной его задачей было производство оружейного плутония. Первой же гражданской атомной станцией большой мощности стала Белоярская АЭС. Сейчас ее первые реакторы уже остановлены. Эта статья как раз об их истории, о сложностях обращения с накопленным отработанным ядерным топливом и путях решения связанных с ним проблем.

атомная энергетика ссср история. Смотреть фото атомная энергетика ссср история. Смотреть картинку атомная энергетика ссср история. Картинка про атомная энергетика ссср история. Фото атомная энергетика ссср история
Белоярская АЭС. На переднем плане первая очередь станции с реакторами АМБ. Источник.

Реакторы АМБ

О строительстве и устройстве Белоярской АЭС в 1960-е можно посмотреть вот этот документальный ролик — Белоярская АЭС им. И. В Курчатова, 1965

Во-многом, работа этих реакторов носила исследовательский характер, полученные данные по ее работе послужили основой для создания в десятки раз более мощных реакторов РБМК, составивших основу советской атомной энергетики 1970-х-1980-х годов.
На реакторах АМБ впервые в промышленном масштабе апробировалась схема ядерного перегрева пара в целях повышения коэффициента полезного действия (достигнуто значение в 37 %). Однако эксплуатация энергоблоков АМБ сопровождалась и значительным количеством отклонений и нарушений в работе. Бывали и аварии.

Так, 25 мая 1976 года на втором блоке при выходе на мощность, после срабатывания аварийной защиты, произошло повреждение нескольких десятков тепловыделяющих сборок (ТВС). Эта авария относилась к наиболее тяжелым по последствиям и восстановительные работы продолжались около 9 месяцев.

Белоярская АЭС и сегодня остается особенной, новаторской и экспериментальной — на ней эксплуатируются новые для отрасли решения. Сейчас тут работают единственные в мире промышленные энергоблоки с реакторами на быстрых нейтронах БН-600 и БН-800.

атомная энергетика ссср история. Смотреть фото атомная энергетика ссср история. Смотреть картинку атомная энергетика ссср история. Картинка про атомная энергетика ссср история. Фото атомная энергетика ссср история
Самый мощный из действующих в мире промышленных реакторов на быстрых нейтронах — БН-800. Фото автора.

Первая очередь АЭС с блоками АМБ находится в режиме длительной консервации. Энергоблоки окончательно остановлены уже более 30 лет, но, по международным нормам не могут выводиться из эксплуатации пока на них осталось отработавшее топливо. Оставшееся ОЯТ из них выгрузили в бассейны выдержки, технологические отверстия в самих реакторах закрыты с использованием особой смолы-консерванта.

атомная энергетика ссср история. Смотреть фото атомная энергетика ссср история. Смотреть картинку атомная энергетика ссср история. Картинка про атомная энергетика ссср история. Фото атомная энергетика ссср история
Блочный щит управления реактора АМБ-200. Пульт до сих пор частично используется для управления подачей тепла со станции в город Заречный и обеспечение собственных нужд БАЭС. Фото автора.

Для полного вывода из эксплуатации этих блоков необходимо в первую очередь решить вопрос с отработанным ядерным топливом (ОЯТ), которого накопилось чуть менее 300 тонн, и большая часть которого находится на станции в неудовлетворительном состоянии.
Накопленное ОЯТ реакторов АМБ относится к так называемому ядерному наследию СССР, для решения проблем которого в последние годы предпринимаются немалые усилия.

Особенности топлива АМБ

Одна из главных проблем, связанным с тем, почему переработка или безопасное хранение ОЯТ АМБ не было организовано ранее – это большое разнообразие видов этого топлива и его нестандартные габариты. За почти 38 реакторо-лет эксплуатации АМБ было испытано более 40 типов тепловыделяющих сборок (ТВС) для испарительных и пароперегревательных каналов реакторов.

Сборки с топливом имеют нестандартные размеры — 14 м в длину, что на 4 м больше, чем у ТВС самого крупного отечественного реактора РБМК. При этом топливо размещалось лишь в центральных 6 метрах, соответствовавших высоте активной зоны, а 4 метровые концевики были заполнены пирографитом. Само гранулированное топливо было тоже нетиповым — оно находилось в наполнительном материале (медь, магний или кальций), масса которого доходила до 16%. Урановое топливо с обогащением от 2 до 20% по U-235 по составу делилось на несколько групп – оксидное (близкое к современному диоксиду урана), металлический сплав с добавлением 3-9% магния, карбидное (UC).

За период эксплуатации из реакторов было извлечено 7196 топливных каналов (около 285 т ОЯТ), из которых 2227 (около 95 т ОЯТ) были отправлены на завод РТ-1 на ПО «Маяк», г. Озерск, а остальные до 2016 года оставались в приреакторных хранилищах на Белоярской АЭС. В 1970-х и 1980-х гг. исследовалась возможность переработки топлива на ПО «Маяк». Была показана принципиальная возможность организации начальных стадий процесса. Но основные проблемы были связаны с разделкой сборок и их подготовкой к растворению. До практической переработки ОЯТ дело так и не дошло, так что проблема обращения с топливом АМБ ждала своего отложенного решения.

Хранилось ОЯТ АМБ на Белоярской АЭС в двух бассейнах выдержки в 17- и 35-местных чехлах (кассетах) и в одноместных пеналах. 35-местные чехлы были изготовлены из нержавеющей стали, 17-местные — из углеродистой стали, и перед установкой в бассейн изнутри и снаружи покрывались суриком. Изначально планировалось кратковременное хранение чехлов в двух бассейнах выдержки, а затем их отправка на радиохимическую переработку на ПО «Маяк». Но в связи с распадом СССР процесс затянулся на два десятилетия.

Уже в начале 2000-х гг. наибольшую проблему представляло топливо в 17-местных кассетах. Большинство этих кассет к тому времени находилось в бассейнах выдержки более 20 лет, что превышает их расчетный 15-летний срок эксплуатации. Поэтому предполагалось, что все они потеряли свою герметичность и заполнены водой бассейнов выдержки. При этом в них были загружены облученные ТВС более ранних и несовершенных конструкций со значительно большим выгоранием, а также практически все поврежденное топливо. Всего в кассетах содержится порядка 20% поврежденных при эксплуатации ТВС. Вероятное состояние продуктов коррозии топлива – это смесь в виде пульпы из продуктов коррозии компонентов топливной композиции с фрагментами графитовых втулок. Значительное количество топлива имело магниевую матрицу, которая при повреждении герметичности оболочки твэла подвержена коррозии в воде. Топливо также может оказаться на дне бассейна.

На заводе РТ-1 ПО «Маяк» находится на хранении 131 кассета К-17 (около 95 тонн ОЯТ), которые поставлялись туда в течение 10 лет, начиная с 1972 г. Кассеты размещены в глубоководной части бассейна выдержки. Кассеты из коррозионной стали в количестве 103 шт. и 28 кассет из черной конструкционной стали хранятся в подвешенном состоянии на консолях бассейна. Для исключения коррозии они помещены в нержавеющие пеналы. Применяемый способ обеспечивает безопасное хранение ОЯТ и предотвращает загрязнение вод бассейна продуктами деления ОТВС, но не дает гарантии, что в будущем не возникнут проблемы, которые приведут в дальнейшем к разрушению топлива в кассетах, а также к необходимости отказа от хранения кассет в подвешенном состоянии.

Выбор вариантов обращения с топливом

С учетом сложности ситуации с топливом АМБ, рассматривались самые разные варианты обращения с ним: отправка на временное хранение с последующим решением вопроса о переработке; отправка на длительное хранение с последующим захоронением; разделка и помещение в пеналы на самой АЭС, а затем отправка на переработку в ПО «Маяк»; доставка ОТВС на ПО «Маяк», разделка и переработка.

Однако, из-за большого количества аварийного топлива, его продолжающейся деградации и из-за дороговизны строительства современного хранилища для такого количества нестандартного топлива, было решено переработать ОЯТ АМБ на ПО «Маяк». Для этого нужно было провести ряд неотложных мероприятий по устранению угроз безопасному хранению ОЯТ на Белоярской АЭС (например, с 2001 года была организована система очистки воды бассейна выдержки), и в то же время подготовить решение двух задач – транспортировки топлива и его дальнейшей переработке на заводе РТ-1.

Для безопасного вывоза топлива с БАЭС на ФГУП ПО «Маяк» требовалась разработка специального транспортно-упаковочного комплекта (ТУК) для длинномерных ТВС длиной около 14 м и специального вагона-контейнера, провести обоснование безопасности транспортирования и хранения поврежденного топлива, а также отработки обращения с длинномерными ТВС.

В итоге РФЯЦ-ВНИИТФ совместно с ОАО «Уралхиммаш» к 2006 году разработали и запатентовали два варианта транспортно-упаковочного контейнера ТУК-84 для загрузки 17- и 35-местных кассет с ОЯТ АМБ. Контейнер ТУК-84 имеет длину более 15 метров, диаметр до 1,4 м. Кассеты с топливом загружаются в металлический герметичный пенал, а он уже размещается в прочном контейнере толщиной более 20 см. ТУК снабжен системами контроля температуры и давления внутри пенала с топливом.

атомная энергетика ссср история. Смотреть фото атомная энергетика ссср история. Смотреть картинку атомная энергетика ссср история. Картинка про атомная энергетика ссср история. Фото атомная энергетика ссср история
Один из вариантов конструкции для транспортирования 35-местных кассет с ТВС. Масса контейнера 86600 кг, пенала 3820 кг и 35-местной кассеты 9650 кг.

Корпус ТУК-84 изготавливают по особой рулонной технике «витого сосуда», когда стальные полосы толщиной 5 мм и шириной 1,4 м навиваются и свариваются в цилиндр переменной толщины. Подобная технология применяется в создании сосудов высокого давления в химической промышленности. В сочетании с переменным сечением она позволяет создать особо прочный корпус с минимальной массой. В итоге ТУК для перевозки длинномерного топлива АМБ имеет массу менее 90 тонн, что позволяет транспортировать его по железной дороге на специальных вагонах без ограничений.

атомная энергетика ссср история. Смотреть фото атомная энергетика ссср история. Смотреть картинку атомная энергетика ссср история. Картинка про атомная энергетика ссср история. Фото атомная энергетика ссср история
Механические испытания ТУК-84 на падение с высоты.

К 2014 году на ОАО «Уралхиммаш» в Екатеринбурге было изготовлено 6 унифицированных ТУК-84, позволяющих транспортировать всю номенклатуру хранящихся на БАЭС чехлов с топливом АМБ. ТУК был испытан на все виды аварийного воздействия, в том числе на падение с высоты 9 м на плоскость и с 1 м на штырь.

Контейнеры приспособлены для транспортировки как автомобилем, так и железнодорожным вагоном. В 2008 году шесть вагон-контейнеров для перевозки ТУКов были произведены на вагоностроительном заводе в г. Тверь.

атомная энергетика ссср история. Смотреть фото атомная энергетика ссср история. Смотреть картинку атомная энергетика ссср история. Картинка про атомная энергетика ссср история. Фото атомная энергетика ссср история
Внешний вид вагон-контейнеров для перевозки ТУК-84. Его длина более 28 м. Источник.

В итоге в ноябре 2016 года на ПО «Маяк» прибыл первый опытный вагон-контейнер, доставивший на радиохимический завод кассету с ОЯТ реакторов АМБ, которая была извлечена из транспортно-упаковочного комплекта и помещена в бассейн-хранилище завода РТ-1. С 30 октября 2017 такие поставки осуществляются на регулярной основе в штатном режиме. В концу 2019 года был завершен первый этап вывоза ОЯТ — было вывезено 124 кассеты с ТВС АМБ.

Посмотреть как происходит доставка топлива и его выгрузка можно вот в этом видеосюжете от информационного центра ПО «Маяк».

Переработка ОЯТ на ПО «Маяк»

На ПО «Маяк» с 1977 года работает единственный в России завод по переработке ОЯТ РТ-1. На нем перерабатывается широкий спектр топлива энергетических и исследовательских реакторов, топлива ледокольного и подводного атомного флота. Однако линии по переработке топлива АМБ в силу его специфичности и небольшой серии, на РТ-1 никогда не было. Тем не менее, ряд исследований, проведенных ранее, показал принципиальную возможность переработки ОЯТ АМБ по технологии классического ПУРЕКС-процесса с растворением топлива в кислотах и выделением ценных компонентов (урана и плутония), но без «привязки» таких работ к технологии завода РТ-1. Проведенные позже исследования показали, что эта переработка возможна на недозагруженной второй линии переработки топлива быстрых реакторов на РТ-1. Так что принципиальных сложностей с самой переработкой нет. Однако необходимо создание инфраструктуры и цехов по приему и разделке ОЯТ АМБ. Для этих задач на ПО «Маяк» проектируется специальное здание отделения разделки и пеналирования (ОРП) для подготовки к переработке топлива, как уже размещенного на «Маяке», так и топлива в кассетах при их дальнейшей поставке с Белоярской АЭС.

атомная энергетика ссср история. Смотреть фото атомная энергетика ссср история. Смотреть картинку атомная энергетика ссср история. Картинка про атомная энергетика ссср история. Фото атомная энергетика ссср история
Проект отделение разделки и пеналирования (ОРП) на ФГУП ПО «Маяк». Источник.

В рамках ФЦП ЯРБ-1 (Федеральная целевая программа «Обеспечение ядерной и радиационной безопасности на 2008 год и на период до 2015 года») в 2012 году началось сооружение первой очереди комплекса по обращению с ОЯТ АМБ. В рамках той же программы финансировались работы по созданию ТУК-84 и необходимой инфраструктуры на самой Белоярской АЭС. В 2015 году завершен первый этап проекта подготовки отделения разделки и пеналирования ОЯТ, в том числе опытный стенд по разделке ТВС и реконструкция бассейна выдержки Б-4, позволившие с 2016 начать прием топлива на ПО «Маяк».

Опытный стенд по разделке ТВС на ПО «Маяк»

В конце 2019-го были разыграны конкурсные процедуры по достройке второго этапа ОРП («объекта 630»), стоимостью около 2 млрд рублей. Финансирование работ осуществляется уже в рамках ФЦП ЯРБ-2 (Федеральная целевая программа «Обеспечение ядерной и радиационной безопасности на 2016 – 2020 годы и на период до 2030 года»). В 2024 году планируется приступить к переработке топлива реакторов АМБ-100 и АМБ-200. До этого момента уже вывезенное топливо будет храниться на ПО «Маяк», а вывоз оставшегося ОЯТ будет произведен в 2026-2027 годах.

Стоит отметить, что решение проблемы топлива реакторов АМБ – это лишь один из примеров проблем ядерного наследия в виде накопленного топлива. Помимо него, многие реакторные установки накопили пусть небольшое по количеству, но разнообразное в силу исследовательских работ по качеству топливо, которое ранее не перерабатывалось – топливо некоторых исследовательских реакторов, экспериментальное топливо реакторов атомных подводных лодок. Часть из этого топлива дефектное. Кроме того, в большом количестве уже накопилось топливо мощных серийных реакторов АЭС – РБМК и ВВЭР-1000.

В рамках ликвидации этого ядерного наследия, на заводе РТ-1 ПО «Маяк» не только задействовали вторую технологическую нитку для переработки ОЯТ реакторов АМБ, но в 2016 году уже завершили реконструкцию и ввели в работу третью технологическую нитку. На ней можно перерабатывать топливо нескольких видов, включая то, которое раньше никогда и нигде не перерабатывалось. Например, первой операцией на модернизированной нитке стала переработка уран-бериллиевого топлива с атомных подводных лодок. На данной нитке стала возможной переработка длинномерного ОЯТ, такого как ВВЭР-1000, которого в России накоплено более шести тысяч тонн. В результате всех запланированных модернизаций, завод РТ-1 на ПО «Маяк» сможет перерабатывать практически всю номенклатуру отечественного ядерного топлива, как уже накопленного, так и вновь образующегося.

атомная энергетика ссср история. Смотреть фото атомная энергетика ссср история. Смотреть картинку атомная энергетика ссср история. Картинка про атомная энергетика ссср история. Фото атомная энергетика ссср история

Доставка отработавшего ядерного топлива реакторов ВВЭР-1000 с Ростовской АЭС в декабре 2016. Источник.

После запуска участка разделки и переработки топлива АМБ на «Маяке», первую очередь Белоярской АЭС можно будет окончательно вывести из эксплуатации, разобрать и очистить площадку для нового промышленного строительства. Таким образом должен безопасно завершится жизненный цикл самых первых из реакторов российских АЭС промышленной мощности.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *