электрическое поле графически поле изображается
Напряженность электрического поля и его графическое изображение
На единичный положительный заряд, помещенный в любую точку электрического поля, будет действовать некоторая сила.
Определение: Сила, действующая на единичный неподвижный положительный заряд в данной точке поля, называется напряженностью электрического поля.
Измеряется напряженность поля в вольтах на метр (в/м).
Если в данной точке поля находится заряд q и поле действует на него с силой F, то напряженность поля Е можно определить по формуле
Если в данной точке поля находится единичный заряд (т. е. q=1), то E = F. Это соответствует данному выше определению напряженности электрического поля.
Пример. В электрическом поле находится заряд q = 0,004 кулона. На заряд действует сила F = 4 ньютонам. Определить напряженность электрического поля.
Решение.
Кулон — заряд, переносимый через поперечное сечение проводника в одну секунду при неизменяющейся силе тока, равной одному амперу.
Следует подчеркнуть разницу между понятиями «напряженность электрического поля» и «напряжение». Напряженность характеризует поле в данной точке через величину силы, действующей на единичный положительный заряд, находящийся в этой точке. Напряжение — это разность потенциалов между двумя точками электрического поля, или работа, совершаемая силами поля при переносе единичного положительного заряда из одной точки поля в другую.
ГРАФИЧЕСКОЕ ИЗОБРАЖЕНИЕ ЭЛЕКТРИЧЕСКОГО ПОЛЯ
Мы уже знаем, что вокруг электрического заряда существует электрическое поле, проявляющееся, в частности, в том, что на пробный заряд, внесенный в это поле, действует механическая сила. Кроме того, нужно обратить внимание и еще на одно очень важное обстоятельство: пробный заряд под действием электрического поля всегда перемещается в определенном направлении. Например, если поле создано положительно заряженным шаром, то пробный положительный заряд отталкивается от шара и перемещается в направлении радиуса шара. Если бы шар был заряжен отрицательно, то пробный положительный заряд притягивался бы к шару, но опять перемещался бы в направлении радиуса.
В поле, созданном несколькими зарядами, перемещение пробного заряда происходило бы по более сложной траектории.
Перемещение пробного заряда q в электрическом поле происходит под действием силы поля (F). В электрическом поле можно провести линии, касательные к которым в каждой точке совпадают с направлением силы F, действующей па пробный заряд. Такие линии называются электрическими силовыми линиями (рис. 1).
Рисунок 1. Электрическая силовая линия.
Электрические силовые линии позволяют характеризовать электрическое поле. Ими пользуются при объяснении многих электрических явлений.
Следует твердо помнить об условности понятия «электрическая силовая линия». Это не что иное, как графическое изображение реально существующего электрического поля. Пользуясь таким условным изображением, можно наглядно и просто охарактеризовать направление движения зарядов в поле, уяснить характер взаимодействия заряженных тел и т. д.
В дальнейшем мы будем неоднократно использовать термин «электрические силовые линии», не оговаривая каждый раз его условность.
Для ряда простых случаев графическое построение электрического поля не вызывает затруднений. Нужно только помнить следующее:
— силовые линии направлены от положительных зарядов к отрицательным (направление движения пробного положительного заряда);
— силовые линии начинаются на положительном заряде и кончаются на отрицательном;
— силовые линии должны быть направлены всегда перпендикулярно поверхности заряженного тела.
На рис. 2 и 3 показаны примеры графического изображения электрических полей. Направление силовых линий обозначается стрелками.
Рисунок 2. Силовые линии электрического поля, образованные точечным зарядам: слева-положительным, справа-отрицательным.
Рисунок 3. Силовые линии электрического поля, образованные двумя зарядам: слева-двумя разноименными, справа-двумя одноименными.
Следует запомнить, что положительный заряд, внесенный в электрическое поле, будет перемещаться от точек с более высоким потенциалом к точкам с более низким потенциалом. Наоборот, отрицательный заряд, внесенный в электрическое поле, будет перемещаться от точек с более низким потенциалом к точкам с более высоким потенциалом.
ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!
Графическое изображение электрических полей
Электрическое поле графически изображается с помощью электрических силовых линий. Электрическими силовыми линиями называют линии, показывающие направление действия сил электрического поля на положительный заряд, помещенный в это электрическое поле.
Направление электрических силовых линий в каждой точке совпадает с касательной, создаваемой направлением вектора напряженности в этой точке. Чем больше напряженность электрического поля, тем больше плотность электрических силовых линий.
Электрическое поле может быть однородным и неоднородным. Однородным электрическим полем называется такое, во всех точках которого электрические силовые линии имеют одинаковую плотность и одно направление. На рисунке 1 показано однородное электрическое поле в средней части между двумя параллельными плоскостями, имеющими разноименные заряды.
Рисунок 1
Если плотность электрических линий неодинакова в различных точках электрического поля, то такое поле называется неоднородным. На рисунке 2 показано неоднородное электрическое поле созданное двумя одноименными зарядами. Электрические силовые линии начинаются на положительных зарядах и оканчиваются на отрицательных или уходят в бесконечность.
Рисунок 2
Электрические силовые линии не пересекаются. Это очевидно из того, что вектор напряженности электрического поля в любой точке поля может иметь только одно направление. Нельзя думать, что электрические силовые линии существуют в действительности. Они являются только наглядным способом изучения электрических полей и показывают действительное направление вектора напряженности в данной точке электрического поля.
Распределение электрического поля в пространстве может быть охарактеризовано не только электрическими силовыми линиями, но и поверхностями разного потенциала—эквипотенциальными поверхностями. Вокруг заряженного шара (рисунок 3) точки с равным потенциалом находятся на сферической поверхности, окружающей заряженный шар.
Рисунок 3
На рисунке 4 сплошными линиями показаны эквипотенциальные поверхности электрического поля, созданного двумя разноименными зарядами. Так как в любых точках одной и той же эквипотенциальной поверхности потенциалы равны, то силы поля не совершают работу по перемещению электрического заряда по эквипотенциальной поверхности, поэтому векторы напряженности электрического поля направлены перпендикулярно к этой поверхности, то есть электрические силовые линии в точке пересечения с эквипотенциальными поверхностями перпендикулярны к ним.
Рисунок 4
Как установлено опытом, напряженность электрического поля нескольких зарядов в данной точке равно геометрической сумме напряженностей электрических полей зарядов в этой точке, создаваемых всеми отдельными зарядами независимо друг от друга E=E1++E2+…+En. Если электрическое поле создано несколькими зарядами, то для определения в данной точке поля результирующей напряженности, созданной всеми зарядами, применяют принцип наложения, который также называется принципом суперпозиции.
Рисунок 5
Принцип наложения заключается в том, что сначала определяют напряженность E1, создаваемую в точке М (рисунок 5) только одним зарядом Q1, предполагая, что второго заряда Q2 в электрическом поле нет, а затем определяют напряженность E2, создаваемую только зарядом Q2 в той же точке М, предполагая, что первого заряда Q1 в электрическом поле нет.
Напряженность электрического поля, созданного зарядами Q1 и Q2, равна сумме Е=Е1+Е2.
10 класс
§ 60. Графическое изображение электрических полей
Линии напряжённости электрического поля.
Фарадей предложил изображать поле линиями, касательные к которым в каждой точке совпадают с вектором напряжённости поля в той же точке поля. Такие линии называют силовыми линиями или линиями напряжённости электрического поля. Отметим их особенности.
1. Предположим, что вблизи положительного точечного заряда нет других положительных зарядов (рис. 9.19, а), а отрицательные заряды расположены на бесконечно большом расстоянии. Линии напряжённости как бы выходят из положительного точечного заряда и идут в бесконечность. Если точечный заряд, образующий электрическое поле, отрицательный, то линии напряжённости сходятся к этому заряду (рис. 9.19, б).
3. Так как электрическое поле существует в любой точке пространства, то через любую его точку можно провести силовую линию. Напряжённость поля в каждой точке пространства имеет определённое направление и значение. Поэтому через эту точку можно провести только одну силовую линию. Тем самым, силовые линии нигде не пересекаются и не прерываются в точках, где нет источников поля.
4. Силовые линии электростатического поля не замкнуты; они начинаются на положительных зарядах и оканчиваются на отрицательных зарядах. На рисунках 9.21 и 9.22 представлены картины электрических полей, созданных двумя разноимёнными и одноимёнными точечными зарядами, равными по модулю.
5. Условились изображать линии напряжённости электростатического поля так, чтобы число линий, исходящих от положительного заряда или заканчивающихся на отрицательном заряде, было пропорционально модулю этого заряда. Чем гуще линии напряжённости в определённой области пространства, тем больше модуль его напряжённости. И наоборот, чем более разрежены линии напряжённости в определённой области пространства, тем меньше модуль его напряжённости.
Кроме того, чем дальше от заряда расположена интересующая нас точка пространства, тем меньше густота силовых линий поля в ней. Следовательно, тем меньше модуль напряжённости электростатического поля и тем с меньшей силой будет это поле действовать на помещённый в поле пробный заряд.
6. На рисунке 9.23 показана картина силовых линий электростатического поля, созданного двумя параллельными металлическими пластинами. Им сообщены равные по модулю, но противоположные по знаку заряды. Из рисунка 9.23 видно, что в пространстве между пластинами вдали от краёв пластин силовые линии параллельны: электростатическое поле здесь одинаково во всех точках.
Электрическое поле, напряжённость которого одинакова (по модулю и направлению) во всех точках пространства, называют однородным.
В ограниченной области пространства электрическое поле можно считать приблизительно однородным, если напряжённость поля внутри этой области меняется незначительно (по модулю и направлению).
Наблюдение силовых линий электрического поля.
Линии напряжённости позволяют представить распределение электрического поля в пространстве. Однако они не более реальны, чем меридианы и параллели на земном шаре. Тем не менее силовые линии можно сделать «видимыми». Для этого нужно металлические тела (электроды) соединить с полюсами электростатической машины и погрузить в вязкий диэлектрик (например, в касторовое или вазелиновое масло). В эту жидкость следует насыпать и хорошо перемешать продолговатые частицы изолятора (например, хинина, манной крупы, семян или мелко настриженный волос).
При зарядке электродов в жидкости создаётся достаточно сильное электрическое поле, под действием которого частицы диэлектрика поляризуются: на их концах возникают заряды противоположного знака (подробно этот процесс будет рассмотрен в § 66 «Диэлектрики в электростатическом поле»). Частицы поворачиваются во внешнем электрическом поле вдоль линий напряжённости, и заряды на их концах взаимодействуют друг с другом. Разноимённые заряды притягиваются, а одноимённые — отталкиваются. В результате частицы диэлектрика выстраиваются вдоль силовых линий (рис. 9.24).
Вопросы:
1. Что называют силовыми линиями (линиями напряжённости) электрического поля?
2. Какими свойствами обладают линии напряжённости электрического поля?
3. Какое электрическое поле можно считать однородным?
Вопросы для обсуждения:
1. По картине силовых линий электростатического поля (рис. 9.25) определите, в какой из точек А, В или C модуль напряжённости поля наибольший. Как направлен вектор напряжённости поля в этих точках?
2. Как можно графически определить, является ли электрическое поле однородным или неоднородным? Является ли однородным поле неподвижного точечного заряда?
Nav view search
Navigation
Search
Тела или частицы, обладающие электрическим зарядом, создают в окружающем их пространстве электрическое поле, являющееся одним из двух компонентов электромагнитного поля.
Что такое электрическое поле
После того как тело получило заряд, оно способно действовать на другие заряженные тела: притягивать тела с противоположным зарядом и отталкивать их, если они имеют такой же заряд.
Каким же образом происходит такое взаимодействие?
Зарядим металлический шарик, закреплённый на металлической подставке. Точно такой же по знаку заряд сообщим другому шарику из пенопласта, подвешенному на нити. Назовём его пробным. Перемещая его на разные расстояния, увидим, что нить с шариком отклоняется в любой точке пространства. Этот способ исследования называется методом пробного заряда.
Почему отклоняется пробный шарик?
Характеризуется электрическое поле физической величиной, которую называют напряжённостью электрического поля. Это количественная характеристика, векторная величина. Она равна отношению силы, действующей на точечный заряд в данной точке поля, к величине этого заряда:
где — напряжённость электрического поля;
Точечным называют заряженное тело, размеры которого настолько малы, что ими можно пренебречь по сравнению с расстоянием, на котором рассматривается воздействие этого заряда. Электрические поля, создаваемые такими зарядами, называют кулоновскими полями.
Силы, действующие на пробный заряд в разных точках электрического поля, отличаются по величине и направлению. Соответственно, различны и напряжённости в этих точках поля. Такое поле называют неоднородным.
Если модуль и направление напряжённости электрического поля одинаковы во всех его точках, то такое поле называется однородным.
Однородное поле создаётся в центре между двумя параллельными заряженными пластинами.
Электростатическое поле
Электрическое поле, созданное неподвижным и не меняющимся во времени зарядом, называется электростатическим полем.
Если электрическое поле образовано несколькими зарядами, то напряжённость в данной точке пространства равна сумме напряжённостей электрических полей, создаваемых в этой точке каждым зарядом в отдельности.
Графическое изображение электрического поля
Графически электрическое поле изображают с помощью силовых линий.
Силовая линия – это такая линия, касательная к которой в каждой её точке совпадает с направлением вектора напряжённости в этой точке.
Начинаются силовые линии на положительных зарядах или на бесконечности и заканчиваются на отрицательных, либо уходят в бесконечность. Они никогда не пересекаются и не касаются друг друга.
Силовые линии указывают направление действия силы, которая действует на положительно заряженную частицу со стороны электрического поля.
В общем эти линии имеют форму кривых. Но они могут быть и прямыми линиями в случае, если описывается поле одиночного точечного заряда.
Силовые линии положительного точечного заряда уходят в бесконечность.
Силовые линии отрицательного точечного заряда начинаются в бесконечности.
Совокупность двух точечных зарядов, равных по величине, но противоположных по знаку, находящихся на некотором расстоянии друг от друга, называется электрическим диполем. В целом электрический диполь нейтрален.
Вот так выглядят силовые линии электрического диполя.
А вот так располагаются силовые линии двух одинаковых по знаку электрических зарядов.
Электростатический потенциал
Другой величиной, характеризующей электростатическое поле, является электростатический потенциал (точечный потенциал). Это скалярная величина, равная отношению потенциальной энергии взаимодействия электрического заряда с полем к величине этого заряда. Электростатический потенциал – это энергетическая характеристика электрического поля:
В вакууме электростатический потенциал точечного заряда определяют по формуле:
Напряжённость электрического поля связана с его потенциалом следующим отношением:
Так как электрическое поле является потенциальным полем, то работа, совершаемая при перемещении заряда q из точки 1 в точку 2, равна:
Электрическое поле, созданное электрическими зарядами, называют потенциальным. Его силовые линии начинаются на положительном заряде и заканчиваются на отрицательном. Электрическое поле, возникшее за счёт электромагнитной индукции, называется вихревым. Силовые линии такого поля замкнуты. Существуют комбинации потенциальных и вихревых полей.
Электрическое поле является одной из составляющих электромагнитного поля. Оно возникает не только вокруг электрических зарядов, но и при изменении магнитного поля.
В свою очередь, магнитное поле появляется при изменении электрического поля или создаётся током заряженных частиц.
Электрическое поле. Напряженность эл.поля. Графическое изображение
Электрическое поле – возникает вокруг любых зарядов или заряженных тел и действует на заряды или заряженные тела.
Напряженность- это силовая характеристика электрического поля.
Напряженность равна силе, действующей со стороны поля на единичный положительный заряд, в данной точке поля.
– заряд на который действует сила.
– диэлектрическая проницаемость вещества, показывает во сколько раз электрическое поле в веществе отличается от поля в вакууме.
Графически электрическое поле изображается с помощью линий напряженности. Они направлены от плюса к минусу. Для того чтобы нарисовать электрическое поле представим что вокруг находится большое количество зарядов. Линии напряженности рисуем соединяя первоначальный заряд с этими зарядами.
|
|
Однородное поле – это поле, для которого напряженность во всех точках одинакова по величине и направлению.