Какую воду залить в систему отопления частного дома
Подготовка воды для системы отопления и как ее правильно умягчить
Чаще всего теплоносителем в домашних автономных системах отопления выступает вода. Это дешевый и доступный ресурс, который быстро нагревается и при обеспечении равномерности циркуляции доносит тепло до всех элементов теплосистемы. Но вода для отопления может быть избыточно жесткой, мягкой и потому требуется предварительная подготовка носителя перед заливом в систему. Рассмотрим варианты подготовки и способы очистки в домашних условиях с применением различных приборов.
Какую воду можно применять для системы отопления?
Вопреки расхожему мнению, талая и дистиллированная жидкость не совсем подходят для заливки в качестве теплоносителя – избыточная мягкость жидкости так же вредна, как и жесткость. Рассматривая, какой должна быть вода для системы отопления, следует знать – содержание солей, элементов тяжелых металлов больше максимального предела, механических примесей и взвесей в жидкости недопустимо.
Если не подготовить носитель, конструкция быстро выйдет из строя по причинам:
Зарастание туннелей трубы приводит к снижению скорости циркуляции теплоносителя, неравномерности прогрева приборов, повышению расхода топлива и уменьшению теплоотдачи. Поэтому теплоноситель следует подготовить прежде, чем заливать в систему. Планы по подготовке включают проведение химического анализа. Это можно сделать тестовыми наборами для аквариумов или отнести пробы в химическую лабораторию. Второй вариант надежнее, дает более детальный анализ и позволяет подобрать систему для более качественной очистки.
Для забора пробы вода наливается в бутылку или банку объемом не менее 1,5 л. Не рекомендуется брать бутылки из-под сладкой газировки, чая и других напитков кроме воды. Струю сначала сливают 10-15 минут, затем можно брать пробу воды. Пролив нужен для того, чтобы в бутылку не попала застоявшаяся в трубах жидкость – такая проба грозит ошибочными результатами.
А вот для предупреждения попадания кислорода в бутылку, жидкость наливается тонкой струйкой так, чтобы она стекала по стенке тары. Налить под горлышко, плотно закрыть крышкой, отвезти в сертифицированную лабораторию и дождаться результатов. Если нет возможности отдать пробу на анализ сразу, разрешается хранить воду в холодильнике до 2-х суток. Главное – не ставить бутылку в морозилку, чтобы не изменился химический состав пробы.
Химический состав воды для отопления
После определения состава теплоносителя, следует привести значение компонентов к показателям, установленным стандартами:
Концентрация взвесей механического типа должна быть нулевой, а вот мелкие мягкие частицы попадаются в любом случае, от них придется избавляться с помощью фильтровального оборудования. Важно просмотреть содержание болезнетворных бактерий, которые ухудшают качество теплоносителя, образуя на стенках внутреннего туннеля пленку.
Если вода без солей, но с высокой кислотностью, то носитель спровоцирует образование коррозии, в то же время минимальное содержание солей в жидкости снижает скорость процесса ржавления. Однако избыток солей провоцирует отложения накипи, но при этом естественным путем понижает кислотность теплоносителя, которая приводит к коррозии. Поэтому важно достигать баланса содержания веществ без полного их удаления из жидкости.
Важно! Результаты анализа по кислотности следует рассматривать с возможностью повышения температуры теплоносителя. При увеличении нагрева уровень кислотности изменяется, потому в холодном носителе этот параметр должен находиться в минимальных пределах.
Методы и способы подготовки воды
Подготовка воды для системы отопления может производиться следующими способами:
Выбор зависит от компонентного состава теплоносителя, но фильтры устанавливаются всегда. Для потоков с большим включением механических частиц требуются мощные приборы с увеличенным количеством слоев кварцевого песка, активированного угля или керамзита. А воду с малозаметными взвесями (мягкими) пропускают через фильтры с промывными или сменными картриджами.
Важно! Длительная термическая обработка может вывести оксид углерода и смягчить воду, но кипячение не избавляет от карбоната кальция, который способствует образованию накипи.
Как подготовить воду в домашних условиях
К основным проблемам, которые нужно решить, относятся – смягчение, обезжелезивание, обессоливание и устранение твердых и мягких вкраплений. Выбирая методы и способы, следует помнить – повышенная кислотность требует ощелачивания (пригодится сода), высокое содержание щелочей – окисления (хлор).
А теперь рассмотрим еще варианты, доступные для выполнения в домашних условиях:
Важно! При формировании магистрали из труб без оцинковки уровень pH в теплоносителе должен быть в пределах 7-8 единиц.
Совет! Чтобы предупредить повышение концентрации железа в воде, достаточно добавить в воду хлорку (50 мг/1 л). Но способ подходит для трубопроводов, выдерживающих воздействие хлора.
Для устранения мелких и крупных механических вкраплений применяются фильтры различного типа. Чтобы убрать из воды марганец, следует применять те же способы, что и для выведения железа. А снизить риск размножения болезнетворных бактерий поможет облучение жидкости УФ-лучами, хлорирование.
На заметку! Если нет времени на проверку состава, отстаивание и другие этапы обработки, пригодится вода без газа из бутылок. Бутилированная вода в системе отопления – оптимальный выход для закрытых конструкций. Важно лишь проверить уровень pH на допустимые нормативы.
Умягчение и обезжелезивание теплоносителя необходимы для продления срока работы теплосистемы. Способы домашней обработки пригодны для выведения небольшого количества избыточных компонентов, однако если вода считается очень жесткой или содержит много железа, необходимо ставить качественное фильтровальное оборудование. Подбор приборов производится только после определения химического состава воды.
Вода для отопления
Ключевым элементом отопительной системы является теплоноситель, которым может выступать специально подготовленная вода. Выбирая такой источник переноса тепла и эффективного обогрева, необходимо учитывать ряд требований к показателям рабочей среды, иначе дорогостоящее оборудование прослужит недолго и будет работать неэффективно.
Рассмотрим подробнее, зачем нужна подготовленная вода для систем отопления и что лучше для частного дома – умягченная вода, антифриз или дистиллят.
Вода для системы отопления
Подавляющее большинство потребителей выбирает именно отопление дома водой, поскольку это выгодно с экономической точки зрения, ведь ни один другой теплоноситель не стоит так дешево и не имеет при этом столь высокой теплоотдачи.
С другой стороны, просто взять и залить воду в отопление для многоквартирного или частного дома, не проанализировав её состав и не озаботившись очисткой и умягчением, крайне недальновидно. Дело в том, что неподготовленная котловая вода способна спровоцировать формирование накипи, намного уменьшив срок эксплуатации труб и нагревательных элементов, а также снизить проходимость элементов системы. То есть жидкости для отопления батарей станет меньше, и для обогрева придется расходовать больше энергии, а это грозит перерасходом топлива и существенным увеличением затрат на текущее обслуживание.
Соответственно, закачка воды в систему отопления должна выполняться только после предварительной обработки или же можно использовать уже подготовленный состав.
Требования к воде для отопления
Определить, какую воду залить в систему отопления, помогут специальные лабораторные исследования.
Специалисты анализируют предоставленные образцы и делают вывод о том, соответствует ли химически очищенная вода для отопления государственным нормативам по:
• содержанию растворенного кислорода (не больше 0,05 мг/куб. м);
• уровню кислотности (допустимый диапазон от 8 до 9,5);
• жесткости (от 7 до 9 мг экв/л.);
• концентрации железа в пределах 0,5-1 мг/л.
Особое значение имеет показатель жесткости, при повышении которого есть риск образования известковых отложений и поломки системы. Решить проблему позволяет специальный умягчитель воды для системы отопления, который успешно борется с солями магния и кальция. Другой вариант – химически очищенная вода для отопления, (вода, абсолютно лишенная примесей называется деионизированной) но при такой обработке нужно постоянно поддерживать определенную концентрацию реагентов и контролировать изменение уровня жесткости. Дополнительно проводятся тесты, подтверждающие отсутствие патогенных микроорганизмов, из-за которых внутри труб может формироваться пленка.
Что выбрать для системы отопления
Мнения по поводу того, какую воду залить в систему отопления частного дома или жилого комплекса, существенно варьируются, и единого решения тут нет. Выбор сугубо индивидуальный и зависит от совокупности факторов: типа системы, материала деталей, частоты эксплуатации и размеров здания, рабочих характеристик радиаторов и их количества, а также бюджета. Если выбирать, что лучше – антифриз или вода в системе отопления, то второй вариант предпочтительнее.
Во-первых, это дешевле и нет риска повреждения при контакте с оцинкованными деталями.
Во-вторых, не придется дополнительно монтировать устройства точного контроля температурных показателей (если они изначально не были предусмотрены).
Наконец, за работой системы с антифризом постоянно нужно наблюдать, чтобы отслеживать концентрацию теплоносителя и периодически менять его, соблюдая сложные меры предосторожности
Дистиллированная вода для отопления
Среди всех существующих теплоносителей дистиллированная вода для отопления представляется оптимальным решением. Это очищенная от различных примесей и солей жидкость, применение которой является эффективным средством профилактики накипи, а также выхода из строя радиаторов.
Дистиллированная вода со специальными присадками в систему отопления частного дома закачивается также, как и другие теплоносители, но не провоцирует развитие коррозии и налета накипи, что гарантирует высокую скорость циркуляции и отличное качество теплоотдачи.
Теплоноситель для системы отопления
Запись дневника создана пользователем evraz, 20.03.18
Просмотров: 14.689, Комментариев: 9
Существуют определенные требования к жесткости воды используемой в качестве теплоносителя для различных типов оборудования, например, котлов, и т. д.
цитирую найденную навскидку в сети статью
«. Хотелось бы более подробно остановиться на подготовке воды для систем отопления использующих алюминиевые радиаторы отопления. Рекомендуемая производителями алюминиевых радиаторов кислотность воды 7-8 рН. Многие люди считая дистиллированную воду нейтральной заливают её в автономную систему отопления. На самом деле уровень кислотности дистиллированной воды увеличивается из-за поглощения углекислоты из воздуха и устанавливается в пределах 5,5-6 рН. Тоже касается дождевой и талой воды, добавив что к тому же, что эта вода насыщена воздухом. Перед заливкой такой воды в систему отопления необходимо уменьшить её кислотность, например добавлением кальцинированной соды. Уровень кислотности воды можно проверить тестами, свободно продающимися в зоомагазинах «Аквариум». Как говорилось в начале статьи не стоит переусердствовать с умягчением воды. Нормальной для систем отопления считается вода с жёсткостью 12-14 ТН (французских градусов). »
————————————————————————————————————————————-
Контроль pH воды в системе отопления
Наибольшее влияние на образование ржавчины имеют содержащиеся в воде газы – кислород и двуокись углерода, а также другие, растворенные в них субстанции. Они существуют в любом виде воды, и их невозможно отделить. Для того, чтобы избежать этого, следует определить pH воды в системе отопления.
Заполняя систему отопления, мы должны знать, каково качество воды, ведь оно в значительной мере может влиять на протекание процесса коррозии. Например, железо и сталь скорее подвержены коррозии в кислотной среде, чем в щелочной, а алюминий одинаково в кислотной и в щелочной среде утрачивает свое защитное покрытие и также начинает быстро коррозировать. Перед наполнением системы отопления следует определить pH воды.
Уровень pH должен быть большим от 7,5 и, соответственно, составлять:
• в системе отопления из меди и медесодержащих материалов pH=8,0-9,5
• в системе отопления с алюминиевыми обогревателями pH = 8,0-8,5
После заполнения водой системы отопления, вода „привыкает” к специфическим условиям системы. Эта реакция постепенна, вода со временем сама улучшает свое качество. Если ее показатели сразу после запуска в систему отопления несколько отличаются от указанных параметров, следует подождать, пока система сама себя не урегулирует и после нескольких дней работы проверить еще раз.
Контроль качества воды для системы отопления
Правильная подготовка воды для системы отопления очень важна для владельцев частных домов, ведь отсутствие должного внимания к выбору теплоносителя может неблагоприятно сказаться на состоянии всех элементов отопительной системы.
Содержание в воде посторонних механических примесей, тяжелых металлов и солей, а также повышенная жесткость, чреваты рядом последствий:
разрушением стенок труб и котла из-за реакции с химически активными веществами;
коррозией материала и образованием накипи;
выходом из строя радиаторов и теплообменников;
ухудшением проходимости теплоносителя и снижением скорости воды в отдельных элементах системы;
снижением показателя теплоотдачи до 20-25%;
перерасходом топлива
Для систем отопления требуется особенная вода, прошедшая все стадии очистки и обработки. Предварительная водоподготовка для системы отопления позволит избежать преждевременного ремонта котельной, замены радиаторов и котла.
Какую воду можно заливать в систему отопления?
Определить химический состав и пригодность выбранного вами теплоносителя можно путем проведения специализированных тестов. Данные услуги предоставляют сертифицированные лаборатории, гарантируя высокую точность и достоверность данных.
Определив концентрацию реагентов в составе теплоносителя необходимо привести их значение к определенному уровню:
Наличие растворенного кислорода около 0,05 мг/куб.м. либо его полное отсутствие.
PH или степень кислотности в пределах 8.0 — 9.0
Содержание железа не более 0,5-1 мг/л
Показатель жесткости около 1,5-2,5 мг экв/л
Концентрацию всех веществ необходимо проверять как минимум один раз в полгода.
Болезнетворные микроорганизмы, содержащиеся в воде, могут значительно ухудшить качество теплоносителя и образовать на стенках системы слизистую пленку, мешающую работе системы.
Не следует забывать о некоторых свойствах воды: полностью обессоленная мягкая вода с повышенной кислотностью является идеальной средой для образования коррозии за счет присутствия кислорода и диоксида углерода.
Антифриз ограничен в применении некоторыми европейскими производителями котельного оборудования на российском рынке во избежание нарушений правил эксплуатации оборудования. Кто то никак не ограничивает, кто то запрещает совсем, кто то оговаривает какой то конкретный антифриз немецкого производства, например Antifrogen
Из антифризов российского производства позволю себе выделить антифриз Hot Stream (из бельгийского сырья), допущенный к применению крупнейшими производителями насосов и некоторого другого оборудования.
05.03.2019
Дополнение по многочисленным откликам, позволяющее подробнее раскрыть вопрос.
Статья с сайта производителя Hot Stream http:// hstream. ru
Как выбрать теплоноситель (на основе антифриза)?
.
О разновидностях антифризов
Из существующих в природе жидкостей наилучшими физическими свойствами, с точки зрения теплопередачи, обладает, безусловно, вода. У нее наиболее высокая теплоемкость и теплопроводность, а также относительно низкая вязкость. Однако высокая температура кристаллизации 0°С и уникальное свойство расширяться при замерзании делает воду непригодной для холодильных установок и систем, имеющих риск замерзания в зимних условиях. В связи с этим, во многих случаях приходится использовать незамерзающие (низкозамерзающие) теплоносители — антифризы, которые могут функционировать при отрицательных рабочих температурах, а также практически не расширяются при замерзании.
Антифризами, которые принято использовать в качестве теплоносителей и хладоносителей, являются водные растворы этиленгликоля, пропиленгликоля, других гликолей, а также растворы некоторых неорганических и органических солей. По-существу, теплоносители и хладоносители выполняют одинаковую функцию, так как переносят тепло от «нагревателя» к «холодильнику», и их терминологическое различие носит условный характер. В дальнейшем будем использовать лишь один термин — теплоноситель.
Поскольку формат данной статьи не позволяет сделать полный обзор всех перечисленных выше теплоносителей, ограничим свое рассмотрение лишь теплоносителями на основе этиленгликоля в применении к системам отопления, вентиляции, кондиционирования. Именно этиленгликолевые теплоносители получили на сегодняшний день наиболее широкое распространение в инженерных системах зданий и сооружений.
О составе и свойствах антифризов.
Чтобы грамотно подойти к выбору теплоносителя, необходимо иметь элементарные знания о теплофизических характеристиках растворов этиленгликоля и других свойствах, которыми должны обладать эти продукты. Неправильный выбор антифриза и несоблюдение правил эксплуатации может стать причиной множества проблем в процессе эксплуатации вплоть до полного выхода системы из строя.
В состав антифризов входят базовые компоненты — вода и этиленгликоль, которые составляют 93–97% объема жидкости, остальное — присадки. Количественное соотношение этиленгликоль-вода определяет физические свойства теплоносителя: температуру кристаллизации, температуру кипения, теплоемкость, теплопроводность, вязкость, объёмное расширение, и другие. Однако «лицо» антифриза определяют присадки, или как принято говорить, «пакет присадок». От них зависят антикоррозионные и антикавитационные свойства антифриза, срок эксплуатации, стоимость. Именно по пакетам присадок отличаются друг от друга антифризы разных компаний-производителей: BASF, Arteco, DOW Chemical, Clariant, и так далее.
Присадки выполняют принципиальную функцию при эксплуатации антифриза — защиту металлов от коррозии. Как показывают экспериментальные данные, скорость коррозии при отсутствии присадок на два порядка выше, чем при наличии присадок.
Коррозионный слой (ржавчина) на стенках каналов теплообменника становится изолятором тепла, так как имеет теплопроводность примерно в 50 раз меньшую, чем металл. Этот слой в разы снижает скорость теплопередачи, а, следовательно, и эффективность теплообменной системы. Проблема усугубляется тем, что коррозионный слой сужает каналы теплообменников и увеличивает их гидравлическое сопротивление (гладкая прежде поверхность становится шершавой). Это ведет к уменьшению скорости движения теплоносителя, и дополнительному снижению теплопередачи. В системах отопления коррозия приведет к тому, что значительная часть тепла будет «вылетать в трубу». В холодильных установках коррозия снижает холодопроизводительность и соответственно увеличивает энергетические затраты.
Из-за продуктов коррозии (частиц ржавчины), находящихся в теплоносителе, может протечь (разгерметизироваться) подшипник циркуляционного насоса, засориться каналы теплообменников, отопительного котла. «Запущенная» коррозия может привести к протечкам теплообменников и даже к полному разрушению отдельных элементов системы.
Современные пакеты присадок способны эффективно защищать металлы теплообменных систем от коррозии и сохранять эти свойства в течение 10 и более лет.
Принципиальной ошибкой, которая, к сожалению, часто имеет место при заправке теплообменных систем, является использование водных растворов этиленгликоля (пропиленгликоля) без добавления в них пакета присадок. Иногда этому способствуют нечетко составленные инструкции по эксплуатации оборудования, в которых даются рекомендации только по концентрации гликоля и не упоминается о присадках. Подчеркнем, что теплоноситель должен содержать пакет присадок, причем максимально высокого качества. Мнимая экономия на присадках при эксплуатации приводит к несоизмеримо большим потерям, связанным с остановкой, демонтажом и заменой оборудования.
Антифриз предназначен исключительно для технического использования, поэтому нельзя допускать его попадания в пищевые продукты и в питьевую воду во избежание отравления. Опасной для жизни человека дозой при попадании в желудок считается 100 мл этиленгликоля. При случайном попадании антифриза на руки или на одежду он легко смывается водой не оставляя раздражения или ожогов. Срок биологического разложения этиленгликоля в почве составляет порядка 1 месяца. Этиленгликоль, растворенный в воде в концентрациях менее 1 г/л, не причиняет вреда рыбам и водным живым организмам.
Следует отметить, что антифриз имеет меньший, чем у воды, коэффициент поверхностного натяжения, поэтому легче проникает в мелкие поры, трещины. Кроме того, набухание резины в антифризе меньше, чем в воде. Поэтому в системах, длительное время работавших на воде, замена воды на антифриз может привести к появлению протечек, связанных с тем, что резиновые прокладки принимают первоначальный объем. Рекомендуется первые дни после заливки антифриза следить за состоянием соединительных узлов системы и при необходимости подтягивать их или менять уплотнения. Лучшей защитой от протечек являются хорошие прокладки и качественная сборка системы.
В системах отопления нельзя использовать элементы, содержащие цинк, в частности, оцинкованные изнутри трубы. При температурах, превышающих +70°С, цинковое покрытие будет отслаиваться и оседать на нагревательных элементах котла, а антикоррозионные свойства теплоносителя значительно ослабятся.
Срок службы антифриза зависит от режима его эксплуатации. Не рекомендуется доводить теплоноситель до состояния кипения (температура кипения при атмосферном давлении составляет 106 — 116°С в зависимости от степени его разбавления водой). При локальном перегреве теплоносителя до температур, превышающих +170°С, будет происходить термическое разложение этиленгликоля, образование «нагара» на нагревательных элементах, выделение газообразных продуктов разложения и разрушение антикоррозионных присадок. Поэтому в нагревательных котлах должна быть обеспечена надлежащая циркуляция теплоносителя, и нагревательные элементы в процессе работы должны быть полностью погружены в теплоноситель, чтобы не допускать их перегрева и «пригорания» антифриза. По-существу, в теплообменных системах следует проводить предварительные тепловые расчеты на предмет установления возможности для данного теплоносителя обеспечивать необходимые тепловые потоки. При этом можно использовать табличные данные для параметров, входящих в уравнения подобия, таких как число Прандтля, число Рейнольдса.
Еще одним важным аспектом применения антифризов является герметичность теплообменной системы. Известно, что этиленгликоль окисляется при контакте с атмосферным воздухом и процесс окисления ускоряется при повышении температуры — примерно вдвое на каждые 10°С. Продукты окисления этиленгликоля — гликолаты разрушают антикоррозионные присадки и приводят к усилению коррозии. Поэтому необходимо по возможности исключить контакт теплоносителя с воздухом, в частности, применять герметичные расширительные емкости.
О температуре замерзания антифриза.
В практике применения антифризов часто возникает вопрос о выборе температуры замерзания теплоносителя, который сводится к выбору концентрации антифриза в растворе. Повышенная концентрация, кроме удорожания, создает повышенную вязкость теплоносителя, и снижает эффективность теплопередачи. Кроме того, не всякий насос способен перекачивать жидкость с вязкостью в 2–3 раза превышающей вязкость воды. Выбор оптимальной концентрации теплоносителя важен как с технической, так и с финансовой точки зрения. Часто также возникает вопрос, что будет с теплообменной системой, если теплоноситель в ней замерзнет в результате штатной или нештатной ситуации?
В отличие от воды, водно-этиленгликолевый раствор и соответственно теплоноситель замерзает в несколько этапов. Вода замерзает «мгновенно» (разумеется, не по времени, а по температуре), то есть, при 0°С это еще жидкость, а при минус 1°C уже лед. Теплоноситель замерзает постепенно: в процессе охлаждения при некоторой отрицательной температуре в жидкости начинают образовываться кристаллы. Затем, при дальнейшем охлаждении жидкости, кристаллов в ней становится все больше и больше (это состояние называется «шуга», по-английски, «slush ice» — что-то наподобие манной каши), и наконец, при некоторой более низкой конечной температуре эта шуга затвердевает.
Начальная температура образования кристаллов называется «температурой кристаллизации», по-английски «freezing point» (измеряется по ASTM D 1177). Конечная температура перехода из жидкого в твердое состояние называется «температурой потери текучести» или «температурой застывания», по-английски, «setting point» (по DIN 51583) или «pour point» (по ASTM D 97).
Для антифризов с температурой кристаллизации минус 30°С, которыми мы обычно пользуемся, разница между «freezing point» и «setting point» составляет около 8°С. То есть, антифриз, который начинает кристаллизоваться при минус 30°С, затвердеет лишь при минус 38°С. В промежутке между минус 30°С и минус 38°С он будет находиться в состоянии «манной каши» — более или менее густой.
В России, при описании и тестировании антифризов, обычно пользуются «температурой начала кристаллизации» (по ГОСТ 28084–89) или «температурой кристаллизации» (по ГОСТ 18995.5, совпадает с ASTM D 1177). В Европе, однако, чаще используют понятие «температура защиты от замерзания», по-английски, «frost protection». Она определяется как среднее арифметическое между «температурой кристаллизации» и «температурой застывания». На наш взгляд, именно «frost protection» наиболее адекватно характеризует «температуру замерзания» антифриза, так как это середина фазового перехода из жидкости в твердое тело.
Здесь необходимо отметить еще один принципиальный момент. В отличие от воды, которая при замерзании расширяется в объеме на 9% и «рвет трубы», антифриз при замерзании не «размораживает» теплообменную систему. Водно-этиленгликолевый раствор при переходе из жидкости в твердую фазу расширяется весьма незначительно. Теплоноситель с концентрацией этиленгликоля 40% при замерзании (температура замерзания около минус 30°С) расширяется в объеме лишь на 1,5%. Соответственно, его линейное расширение составит всего 0,5%, а это безопасно для практически любых конструкционных материалов.
Таким образом, при наступлении сильных холодов не следует опасаться каких-либо серьезных последствий (трещин или протечек) от антифриза, замерзшего в системе. Антифриз превратится в застывшую «манную кашу», а при ослаблении холодов, снова станет жидким.
Производители антифризов.
Мировыми лидерами в разработке и производстве теплоносителей на сегодняшний день являются компании DOW Chemical (США), Arteco (Бельгия), BASF (Германия), Clariant (Швейцария). Эти компании разработали лучшие современные пакеты присадок и производят на их основе теплоносители под брендами Dowtherm, Ucartherm (DOW); Zitrec (Arteco); Glythermin (BASF); Antifrogen (Clariant). Наиболее продвинутыми в этой области являются так называемые карбоксилатные технологии, обладающие высокотемпературной стабильностью и максимальной долговечностью.
В России, к сожалению, отсутствуют собственные разработки пакетов присадок, отвечающие мировому уровню. По-видимому, это связано с отсутствием адекватной научной базы, специалистов и вообще социального заказа на такие разработки. Отечественные теплоносители, которые присутствуют на российском рынке, являются, по сути, морально устаревшим Тосолом или его модификациями. Как правило, такие продукты изготавливаются по так называемой традиционной технологии, соответствующей ГОСТ 28084–89 для автомобильных охлаждающих жидкостей, производившихся в СССР.
Однако некоторые российские предприятия кооперируются с ведущими зарубежными компаниями и производят продукцию, разработанную этими компаниями, широко применяемую в мире. При этом используются российские базовые сырьевые компоненты и производственные мощности, а из-за рубежа поступают пакеты присадок и технология производства. К таким предприятиям относится АО «ТЕХНОФОРМ», начавшее в 2003 году совместное производство с компанией Arteco (Бельгия).
В заключение следует сказать, что применение антифризов в системах отопления, вентиляции, кондиционирования имеет широкие перспективы, и российский рынок низкозамерзающих теплоносителей постоянно расширяется и совершенствуется.