Перепускной клапан в авто
Перепускной клапан.
Перепускной клапан (Waste Gate) Турбина вращается за счет выхлопных газов, которые проходя через лопасти крыльчатки, раскручивают ее. Вращающающаяся крыльчатка (пропеллер), раскручивает колесо компрессора турбины, что и приводит к созданию давления во впускном коллекторе. Уровень этого давления определяется количеством воздуха, проходящего через турбину. Количество и скорость выхлопных газов, зависят в свою очередь, от частоты вращения двигателя (об/мин), т.е. чем больще мощность на выходе — и больше об/мин совершает двигатель, тем больше выхлопных газов проходит через турбину, следовательно создается большее давление. Допустим, вы едите достаточно быстро, выхлопного газа много, турбина создает все больше и больше давления, выхлопного газа становится еще больше, и опс, мотор умер от избытка давления — приехали.
Как же контролировать это давление?
Поток выхлопных газов на крыльчатку турбины должен буть уменьшен т.е. выхлопные газы должно контролируемо уходить или до турбины или непосредственно из нее. В стоковых машинах обычно практикуется внутренний перепускной клапан, т.е. выхлопные газы выводятся непосредственно из корпуса самой турбины. Однако многие устанавливают внешний перепускной клапан до входа в турбину путем установки перекрестной трубы или замены части выпускного коллектора.
Внутренний перепускной клапан имеет большое отверстие, через которое выхлопной газ выходит из турбины. Внутренний клапан имеет специальную заслонку, которая закрывает это отверстие в момент работы турбина (когда набирается требуемое давление) — по-принципу действия это чем-то похоже на дверь. И как и дверь, заслонка имеет промежуточные положения — частичной открытости. Эта заслонка соединена с рычагок, который виден снаружи самой турбины. Этот рычаг соединяют с рычагом активатора. Активатор — это пневматическое устройство, которое преобразует давление в линейное движение (как насос), используя дифрагму и пружину. Активатор приводит рычагом в действие заслонку, вплоть до ее полного открытия при давлении в 10-12 psi.
Как же получается большее давление при установке контроллеров наддува? (буст-контроллер)
Соленоид это специальный прибор который устанавливается перед активатором, и изменяет давление, поступащее на активатор, таким образом активатор как бы обманывается соленоидом и «видит» нереальное давление в системе, а то которое ему «показывает» соленоид. Таким образом если у вас давление до соленоида 13 psi, после него 10 psi, то перепускной клапан если он активизируется при давлении в 12 psi будет оставаться неактивным до 15 psi. (15-3=12), т.е. перепускной клапан откроется на давлении не менее 12 psi, хотя на самом деле будет уже 15 psi. Соленоид делает это за счет использования рабочего цикла маленького механизма (тут на днях, разобрал один — выглядит внутри как маленький игольчатый клапан с пружинкой). С изменением рабочего цикла, соленоид пропускает больше или меньше воздуха через себя. Соленоид управляется компьютером, который считывая давления отдает приказ увеличить или уменьшить наддув, путем открытия или закрытия перепускного клапана.
Регулировка тяги перепускного клапана
Сам по себе рычаг свободно перемещается, качаясь на креплении. Если это не так, и он не двигается свободно, когда отсоединен от тяги перепускного клапана, значит есть какая-то проблема и что-то ему мешает. Это нужно исправить. Иногда рычаг двигается рывками, особенно при нагревании. Длина самой тяги активатора может вариьроваться, таким образом регулируя степень открытости/закрытости перепускного клапана. Затягивание конца булеть укарачивать тягу перепускног клапана, расслабление — удлинять ее. Если тяга короче, клапан более плотно закрыт, и активатору требуется большее давление чтобы открыть клапан. Результат — большее давление, более быстрое раскручивание турбины, и перепускной клапан не открываетя так сильно и так быстро. И наоборот при ослаблении тяги.
Если вы используете контроллер с обратной связью, который сам меряет и контролирует давление (это обычное дело для электронных контроллеров), то регулировка тяги перепускного клапана — не даст такого же эффекта, как она дает при отсутствии обратной связи. Это происходит потому, что контроллер «принимает во внимение», произошедшие изменения, поэтому такая регулировка будет сказываться незначительно. Кроме того, хороший электронный контроллер держит перепускной клапан закрытым (давление на активаторе 0 psi), до тех пор пока не будет набран нужный уровень — таким образом набор давления происходит гораздо быстрее.
Внешние перепускные клапаны (external wastegate) Внешний перепускной клапан — отдельное устройство, которое создано для работы отдельно от корпуса турбины. (хотя некоторые внешние перепускные клапаны устанавливаются на корпус тубины — например Turbonetics). Внешнии перепускные клапана обычно расчитаны на гораздо больший поток воздуха, чем внутренние. Большинство из них имеет двойной активатор, это способствует более быстрому открытию клапана и обеспечивает лучший контроль за раскручиваемостью турбины. Если вы строите мощный автомобиль (500л.с. и выше), то внешний перепускной клапан (может и не один) — это единственный правильный путь. Выход от внешнего перепускного клапан может направляться обратно в выхлоп или в атмосферу (ОЧЕНЬ громко, можно поставить небольшую трубу с глушителем). Кроме того, внешние клапана могут иметь разные пружины, тем самым заменив пружину на более упругую, вы можете задать минимальный уровень наддува предположим в 5 psi. Наддув — как камень — и очень легко регулируется.
Помните, что недостаточно большой перепускной клапан, может привести к избыточному давлению и вы повредите двигатель. Для сильно тюненных автомобилей — настоятельно рекомендуется использовать внешний перепускной клапан.
Перепускные клапаны: использование и преимущества
(переливной клапан) — это устройство, предназначенное
для поддержания давления среды
на требуемом уровне путём перепуска её через ответвление трубопровода[1].
Среда может быть жидкая или газообразная[2].
Перепускной клапан поддерживает давление в системе путём непрерывного
отвода жидкости (газа), чем он отличается от предохранительного клапана, который ограничивает повышение давления в системе сверх заданного путём
однократного или периодического
отвода жидкости (газа) из системы.
Внешне перепускной и предохранительный клапаны могут не отличаться друг от друга.
Также, как и редукционный клапан, перепускной клапан поддерживает постоянство давления в системе. Однако перепускной клапан поддерживает постоянным давление на входе
в клапан («до себя»), а редукционный клапан поддерживает постоянство давления
на выходе
(«после себя»).
Перепускной клапан в системе подачи топлива
Перепускной клапан в системе подачи топлива устанавливается рядом с топливным насосом[3], а иногда и объединяется с ним. Он предназначается для слива избыточного топлива, подаваемого топливным насосом, обратно в топливные баки.[4] Таким образом, перепускной клапан обеспечивает одинаковое давление в топливоподкачивающей системе, независимо от режима работы двигателя.[5] Соленоидный клапан работает вместе с перепускным, перекрывая его, таким образом, герметизируя цепь высокого давления.[6]
Типы, конструкция и принцип работы перепускного клапана ТНВД
Прежде всего, следует отметить, что сегодня существует несколько типов клапанов, обеспечивающих перепуск топлива в ТНВД:
Каждый из клапанов имеет свои конструктивные особенности и занимает определенное место в топливном насосе высокого давления.
Перепускной клапан в многосекционных ТНВД. Данный клапан устанавливается в передней стенке корпуса насоса, он связан с каналами подачи топлива от топливоподкачивающего насоса на нагнетательные секции. Конструктивно клапан очень прост: его основу составляет корпус, внутри которого располагается подпружиненный запорный элемент в виде шарика или диска. Корпус может быть двух типов:
Перепускной клапан
Перепускной клапан служит для слива рабочей жидкости в системе при работающем насосе и выключенном потребителем ее гидравлической энергии.
Перепускной клапан (рисунки 6.5, а, б
) состоит из корпуса
1
, клапана
2
, цилиндрической пружины
3
, запорного клапана
4
, рабочей полости
А
, сливного канала
Б
и канала управления
С
.
Рисунок 6.5 — Перепускной клапан:
При функционировании гидропривода золотник управления перекрывает канал управления С
, а жидкость через рабочую полость
А
поступает к исполнительному рабочему органу, давление жидкости
р
над цилиндрической частью клапана и давление в рабочей полости равны, поэтому за счет разности площадей верхней и нижней
S
частей клапана и жесткости
с
пружины возникает сила
Fр
, прижимающая конус клапана к седлу.
Если золотник управления открывает канал С
и соединяет его со сливом, то за счет разности давлений в надклапанной камере и рабочей полости
А
происходит подъем клапана, часть рабочей жидкости проходит через сверление в цилиндрической его части и через запорный клапан на слив, а основной поток жидкости в полость
В
. При этом происходит разгрузка насоса, так как давление нагнетания равняется давлению слива жидкости.
При расчете предохранительных клапанов, необходимо подбирать параметр посадочного гнезда и жесткость пружины, так как давление жидкости р
1 действуя на поверхность клапана, площадью
S
создает силу
F
1, противодействующую силе сжатой пружины
F
пр. При нормальной работе гидропривода
F
1
F
пр, клапан закрыт.
Расход через золотник клапана определяется по формуле:
, (6.1)
где μкл — коэффициент расхода, μкл = 0,6–0,72;
кл — площадь дроссельной щели;
ρ — плотность рабочей жидкости;
1 — давление срабатывания предохранительного клапана;
Для шарикового клапана:
, (6.2)
, (6.3)
, (6.4)
— диаметр проходного сечения нагнетательного отверстия клапана;
у — наружный диаметр уплотнительного пояска клапана.
Для конусного клапана площадь:
, (6.5)
где α — угол конусности седла клапана, α = (30–60)º для конического и шарикового клапанов;
— высота поднятия клапана от поверхности седла.
. (6.6)
Жесткость пружины предохранительного клапана определяется:
. (6.7)
Давление срабатывания предохранительного клапана при известной жесткости пружины находится по формуле:
Перепускной клапан давления в автомобиле
Перепускной клапан вращается при помощи выхлопных газов, которые раскручивают его, проходя сквозь лопасти крыльчатки. Пропеллер (вращающаяся крыльчатка) крутит колесо турбины, что и способствует созданию давления в коллекторе. Определяется уровень этого давления общим количеством воздуха, проходящим через турбину.
Количество и быстрота выхлопных газов зависят от частоты вращений двигателя, то есть чем больше совершается в минуту оборотов и чем больше мощность, тем через турбину проходит большее число выхлопных газов, соответственно, создается более сильное давление.
На крыльчатку турбины поток выхлопного газа должен быть уменьшенным. Чаще всего в стоковых авто используется внутренний перепускной клапан турбины, за счет которого выводятся непосредственно из корпуса турбины выхлопные газы. Но многие клапаны давления устанавливают до входа, заменяя части выпускных коллекторов или устанавливая перекрестную трубу.
Внутренний перепускной клапан обладает большим отверстием, через которое выходит выхлопной газ. Во внутреннем клапане присутствует специальная заслонка, прикрывающая это отверстие во время работы турбины (при наборе необходимого давления). Это заслонка соединяется с рычагом, находящимся с наружной части турбины. А он соединен с рычагом активатора, который и является пневматическим устройством, преобразующим давление в линейное движение с применением пружины и диафрагмы. Рычагом активатор приводит в действие заслонку до ее полного открытия.
Соленоид – это специализированный прибор, устанавливаемый перед активатором, который изменяет поступающее в активатор давление. С изменением рабочих циклов пропускает соленоид через себя меньше или больше воздуха. Он управляется при помощи компьютера, который считывает показатели давление и отдает приказы уменьшить или увеличить наддув путем закрытия или открытия клапана.
Рычаг сам по себе свободно перемещается, раскачиваясь на креплении. В случае, если происходит это не так и передвигается он не свободно, при отделении от тяги клапана, значит, присутствует какая-то проблема и ее необходимо исправить. Порой рычаг может двигаться рывками, в особенности при нагреве. Длина тяги активатора бывает различной в зависимости от регулирования степени закрытости/открытости перепускного клапана. Затягивание укорачивает тягу клапана, а расслабление удлиняет ее. Если перепускной клапан закрыт более плотно, а тяга короче, то для открытия активатору необходимо большее давление.
Внешний перепускной клапан является отдельным устройством, созданным для работы независимо от корпуса турбины. Обычно они рассчитываются на больший поток воздуха по сравнению с внутренними. Большая часть обладает двойным активатором, способствующим быстрому открытию клапанов и обеспечивая, тем самым, лучший контроль за раскручиванием турбины. У внешних клапанов могут иметься различные пружины, с заменой которых может задаваться минимальный уровень наддува.
Правильный выбор и замена перепускного клапана ТНВД
Редукционные клапаны имеют крайне простое устройство, однако они постоянно подвергаются высоким нагрузкам и довольно часто выходят из строя. Неисправность клапана проявляется ухудшением работы двигателя — он теряет приемистость и на некоторых режимах заметны ухудшения его характеристик. В этих случаях необходимо демонтировать и проверить клапан, и, если он неисправен — произвести замену.
Для замены необходимо выбирать перепускной клапан того же типа и модели, что установлен на ТНВД производителем — только в этом случае есть гарантии, что клапан имеет необходимые характеристики и обеспечит нормальную работу насоса. Многие клапаны допускают регулировку давления, при котором происходит перепуск топлива — данную регулировку необходимо производить в строгом соответствии с инструкцией по ТО и ремонту автомобиля/трактора. Как правило, регулировка сводится к изменению числа шайб, подкладываемых под головку клапана, хотя здесь есть и исключения — все зависит от конкретного типа устройства.
При верном выборе, замене и регулировке редукционного клапана топливный насос будет эффективно работать на всех режимах, обеспечивая нормальные рабочие характеристики силового агрегата.
газов, возникают перепады давления. Для постоянного регулирования напора потока и сброса избыточного давления в системе устанавливается перепускной клапан. Он применяется как в централизованных сетях, так и в локальных магистралях частных домов.
Особенности монтажа
Конкретное место установки перепускного устройства зависит от схемы и типа трубопровода. Клапан может встраиваться в дополнительный отводной контур. Для отопительных систем замкнутого цикла сброс излишнего давления проводится в трубопровод обратного направления. Допускается также его применение в качестве предохранительного вентиля, с настройкой на аварийное давление и со выводом жидкости в канализацию.
В схеме одноконтурной отопительной магистрали перепускной клапан устанавливается в байпасный отвод после нагнетательного насоса.
Перепускной клапан локальной системы отопления. Схема установки.
Для большей сохранности и безопасности всего отопительного контура желательно помимо перепускного устройства установить и дополнительные:
В многоконтурных системах перепускные клапана устанавливаются в каждом контуре.
Что такое перепускной (переливной) клапан, как правильно выбрать и смонтировать его своими руками?
Если вы хотите сказать спасибо автору, просто нажмите кнопку:
Каждая гидросистема помимо насоса, исполнительных гидродвигателей и распределительной гидроаппаратуры имеет в своем составе клапаны. Количество клапанов в зависимости от сложности системы варьируется от единиц до нескольких десятков, а в некоторых случаях их количество измеряется сотнями. В данной статье будут описаны основные типы клапанов, наиболее часто встречающиеся в гидросистемах:
Основной принцип действия клапана
Принцип действия простейшего клапана заключается в уравновешивании силы создаваемой давлением рабочей жидкости на площади седла и силы упругости пружины. Седло клапана — это конструктивный элемент, образующий рабочую кромку, обеспечивающую герметичное прилегание запорного элемента. Простейший клапан имеет конструкцию, изображенную на рисунке 1а. В корпусе 1 имеется рабочая кромка, к которой плотно прилегает поджатый пружиной 3 запорный элемент 2. Сила, создаваемая пружиной 3, определяет разницу давлений между полостями P и T при которой происходит открытие клапана. На рисунке 1б показан клапан в открытом состоянии, где стрелками показано направление движения рабочей жидкости. Двухступенчатые клапаны в зависимости от назначения могут иметь различную конструкцию и будут рассмотрены ниже.
Классификация
По виду запорного элемента различают несколько типов клапанов. Наиболее часто встречаются: сферический (шариковый), конический, плоский (см. рисунок 2). Благодаря высоким герметизирующим свойствам и технологичности наибольшее распространение получили сферические (шариковые) и конические клапаны.
По способу монтажа
различают клапаны картриджные, трубного, стыкового (фланцевого) и модульного монтажа. Картриджные клапаны дополнительно подразделяют на вворачиваемые (резьбовые) и закладные. Существует еще одна категория – бескорпусные клапаны. Бескорпусные клапаны это, как правило, набор составляющих элементов клапана предназначенный для установки в клапанную плиту или корпус.
Картриджные и бескорпусные клапаны могут быть использованы в гидросистеме только в составе клапанного блока или установленными в индивидуальный корпус. На рис. 3, на примере клапанного блока картриджные и бескорпусные клапаны показаны до установки и в установленном состоянии.
Клапаны трубного монтажа имеют резьбовые порты для присоединения гидравлических линий. Клапаны стыкового монтажа обычно предназначены для установки непосредственно на гидроагрегат (например, на гидроцилиндр или гидромотор) и фиксируются группой резьбовых крепежных элементов. Клапаны трубного и стыкового монтажа показаны на рис. 4. и рис. 5.
К подгруппе клапанов стыкового монтажа относится модульная гидроаппаратура СЕТОР (см. рис. 6). В зависимости от максимально пропускаемого потока рабочей жидкости аппаратура разбита на несколько групп: CETOP 02, 03, 05, 07 и 08. Перечень компонентов СЕТОР включает в себя целый ряд гидрокомпонентов: это и всевозможные клапаны, и гидрораспределители, и аппаратура управления расходом, и даже фильтрация рабочей жидкости. Все элементы монтируются группами или по отдельности на монтажные плиты. Пример сборки гидросистемы на элементной базе CETOP 03 показан на рис.7.
Предохранительные клапаны
Предохранительный клапан относится к клапанам регулирования давления с кратковременным срабатыванием. Он устанавливается в гидросистему для ограничения максимально возможного давления в линии. Каждая гидросистема имеет предохранительный клапан в линии высокого давления выходящей из насоса. Предохранительные клапаны могут быть установлены в линиях, давление в которых не должно превышать заданной величины. Например, в линии питания гидродвигателей устанавливают предохранительные клапаны для ограничения в них давления и, как следствие, ограничения максимального создаваемого двигателем усилия. Кроме указанных выше у предохранительных клапанов имеется множество типовых применений.
Согласно ГОСТ 2.781-96 предохранительные клапаны на схемах обозначаются как показано на рисунке 8.
В схемных решениях предохранительный клапан может быть применен для обеспечения минимально заданного уровня давления или подпора в линии гидросистемы. При таком применении предохранительные клапаны принято называть подпорными, что отражает характер их работы.
Схематично устройство предохранительного клапана прямого действия изображено на рисунке. 9. В корпусе 1 установлен конический запорный элемент 2, прижимаемый к седлу пружиной 3. Настройка пружины осуществляется регулировочным винтом 4. Контргайка 5 служит для фиксации регулировочного положения винта. Подвижная опора пружины 8 уплотнена по зазору с корпусом 1. Замкнутый объем 6 и зазор 7 являются демпфером колебаний запорного элемента клапана. Клапаны прямого действия имеют высокую скорость срабатывания, что является их основным достоинством. К недостаткам можно отнести нестабильную работу и склонность к автоколебаниям. Также при увеличении рабочих расходов сильно увеличивается и размер клапана.
Подобных недостатков лишены клапаны непрямого действия, которые часто называют двухступенчатыми или сервоклапанами. Устройство такого клапана показано на рисунке 10. К седлу корпуса 1 пружиной 9 прижат основной запорный элемент 2. В запорном элементе имеется дроссельное отверстие 3. Рабочую полость от линии слива Т отделяет пилотный клапан с запорным элементом 4, поджатый к седлу пружиной 5. Механизм регулировки поджатия пружины состоит из регулировочного винта 7 с контргайкой 10, опоры 6 и уплотнения 8.
Работа клапана происходит следующим образом: при давлении в линии Р ниже настройки срабатывания клапана, уровни давлений в рабочей полости и линии Р одинаковы, основной запорный элемент прижат к седлу пружиной 9. Начальные положения элементов клапана показаны на рисунке 10. При достижении давлением значения настройки пилотного клапана, последний открывается, и рабочая жидкость проходя через дроссельное отверстие 3 устремляется в линию Т. При прохождении рабочей жидкости через дроссельное отверстие создается перепад давлений между линией P и рабочей полостью. Этот перепад давлений воздействует на запорный элемент 2 и преодолевая усилие пружины 9, смещается, что приводит к открытию основного клапана.
Что собой представляет и для чего он нужен
Перепускной, он же переливной, клапан — это устройство, которое регулирует давление в системе путём перепуска или слива излишнего объема рабочей среды (газообразной или жидкостной) в другой контур. Особенность узла состоит в том, что он способен это делать непрерывно, чем отличается от предохранительного аналога, который снижает напор в трубопроводе путём разового или периодического отведения из него среды.
Схожий с ним редуктор давления в отличие от переливного узла, поддерживает стабильный напор жидкости в следующем от него потоке, в то время как переливной — до себя.
Разновидности гидравлических распределителей
Гидрораспределители бывают различных видов. Полная классификация является довольно обширной, поэтому мы рассмотрим вкратце основные типы распределителей:
Моноблочные снабжаются вторичными клапанам для регулировки давления в рабочих каналах. Это позволяет сделать работу распределителя эффективнее при использовании, как в простых, так и в сложных гидравлических системах.
Секционные состоят из золотниковых секций со специальными уплотнениями между ними. Первая секция снабжена предохранительным клапаном для защиты гидравлических контуров от перегрузок. Остальные секции являются рабочими и предназначены для регулировки гидромоторов и гидроцилиндров. Секционные распределители могут использоваться в любой системе.
В качестве запорно-регулирующего элемента могут использоваться золотники, клапаны или краны.
Золотниковые рекомендованы к применению в гидросистемах, работающих под давлением до 32 Мпа, то есть они подходят в большей степени для таких машин, как бульдозеры, экскаваторы и т. д. Клапанные способны выдержать большее давление, более 80 Мпа. Они герметичны, но обладают очень большим весом. Крановые являются вспомогательными, используемые в сочетании с золотниковыми или клапанными. В них жидкость направляется при повороте крановой пробки.
Области применения
Применяется клапан в трубопроводах, где может возникнуть повышенный напор рабочей среды.
В автомобилях он сбрасывает излишки выхлопных газов, раскручивающих лопасти турбины, снижая тем самым напор во впускном коллекторе. Это в конечном счете предохраняет двигатель от излишнего нагрева и выхода из строя. В трубопроводах подачи топлива и охлаждения он сливает излишки, образующиеся под давлением, соответственно в топливный бак и расширительный резервуар.
Широкое применение данная арматура находит в устройствах отопления и горячего водоснабжения, где она обеспечивает рациональное функционирование всех отопительных приборов и участков трубопровода. В сочетании с балансировочными и другими клапанами арматура выполняет роль регулятора давления.
Механизм
Конструкция включает в себя металлический корпус (чугунный, бронзовый, латунный), внутри которого располагаются заслонка и приводящая её в действие пружина. В виде заслонки может быть золотник, тарелка и т.п. Другой вариант – запорная мембрана со штоком. В корпус встроена рукоятка, которая служит для настройки прибора.
Приборы, применяемые в крупных сетях, трубопроводах большого диаметра, могут содержать в своем корпусе рычажно-грузовой механизм.
Схема устройства перепускного клапана:
Принцип работы
Теплоноситель, вода, газовая среда, продвигаясь по трубопроводу, оказывают нажим на заслонку, которую удерживает пружина. Как только сила напора достигает заданного уровня, затвор открывается и избыточный объем рабочей среды отводится по специальному ответвлению в другой контур системы.
После снижения уровня до нормального, спираль ставит затвор в исходное положение и содержимое трубопровода продолжает циркулировать.
При мембранном механизме проход для теплоносителя под воздействием напора открывает мембрана. Когда давление приходит в норму, мембрана возвращается на прежнее место.
В автомобиле перепускной узел турбины имеет заслонку, полное открытие или закрытие которой, зависит от рычага активатора. Длина его тяги может меняться со временем под воздействием различных факторов. Поэтому за этим следят и производят регулировку тяги.
Как работает редукционный клапан
Попробуем разобраться, как работают редукционные клапаны.
Рассмотрим подробнее устройство и работу клапанов прямого и непрямого действия.
Редукционный клапан прямого действия
Принципиальная схема редукционного клапана прямого действия показана на рисунке. Рассмотрим основные элементы и принцип работы редукционного клапана.
Давление жидкости на выходе редукционного клапана в линии отводимой от основной называют редуцируемым.
Золотник 1 расположен в корпусе 2, в котором также установлена пружина 3, ее поджатие регулируется винтом 4.
Давление в напорной линии (Рн) подводится к рабочей полости золотника, не оказывая на него силового воздействия, так как площади поясков золотника равны. Осевыми силами, действующими на золотник являются сила пружины и сила, обусловленная давлением на выходе клапана (Рред). Положение золотника будет определяться силой действия пружины и редуцируемым давлением Рред. Настройка давления на выходе редукционного клапана осуществляется винтом, поджимающим пружину.
При увеличении редуцируемого давления (Рред), золотник, под действием этого давления будет смещаться (вверх по схеме), уменьшая площадь проходного сечения S, увеличивая гидравлическое сопротивление. В результате возросших потерь редуцируемое давление снизиться до величины первоначальной настройки.
При уменьшении редуцируемого давления (Рред) золотник под действие усилия пружины переместится вниз, увеличивая проходное сечение. В результате снижения потерь, давление в отводимой линии достигнет величины настройки.
В редукционном клапане прямого действия на золотник с одной стороны воздействует пружина, а с другой — редуцируемое давление. Усилие пружины зависит от степени ее сжатия, то есть от положения золотника, которое, в свою очередь, зависит от расхода на выходе клапана. В связи с этим при увеличении расходе через редукционный клапан прямого действия будет уменьшаться редуцируемое давление.
Эта особенность работы клапанов прямого действия может оказывать существенное влияние на работу клапана при больших величинах расхода. Поэтому для работы при больших расходах используют редукционные клапаны непрямого действия.
Редукционный клапан непрямого действия
Использование редукционных клапанов непрямого действия позволяет уменьшить влияние расхода на давление.
Схема клапана редукционного непрямого действия показана на рисунке.
Жидкость подводится в клапан через отверстие 9, пройдя через зазор между золотником 5 и седлом в корпусе, жидкость поступает в отовдимую линию 10. Давление жидкости в отводимой линии воздействует на нижний торец золотника. Жидкость из отводимой линии, к тому же, через постоянный дроссель 4 подводится к верхнему торцу золотника и к шарику 1, поджатому пружиной 2, усилие поджатия регулируется винтом 6. Линия 7 соединяется со сливом.
Положение золотника 5 определяется соотношением сил давления в отводимой линии (редуцируемого) и давления в камере 8.
Величина давления в камере 8 зависит от настройки пружины 2, то есть величину давления настройки клапан можно регулировать винтом 6.
В случае увеличения давления в линии отводимой от основной выше давления настройки, шарик отодвинется от седла, пропуская часть жидкости на слив. В результате появления расхода через дроссель 4, давление на верхний торец золотника снизится (из-за потерь на дросселе), золотник под действием редуцируемого давления переместится вверх, уменьшая проходное сечение, что вызовет снижение редуцируемого давления до величины настройки.
Виды и конструкции
По принципам действия различают перепускные клапана с пружинным и мембранным конструкциями. Пружинные механизмы превалируют в системах, где сечение трубопровода составляет не более 200 мм, в других сетях водоснабжения и отопления используется рычажно-грузовой принцип.
Мембранные агрегаты используют все больше при работе с жидкотекучими средами, в которых имеется наличие твердых частиц.
В зависимости от среды трубопровода, перепускные устройства предназначаются для:
По назначению системы они применяются для трубопроводов:
В системах отопления и водоснабжения различают перепускные клапаны по своему предназначению:
На данном фото представлен переливной клапан со шкалой настройки. Изготовлен из бронзы и латуни, предназначен для установки в системах центрального отопления.
Наряду с перепускными регуляторами в конструкцию отопления устанавливают:
Для промышленных и коммунальных сетей применяют конструкции с условным диаметром DN до 500 мм и фланцевым соединением.
В автомобиле пропускные устройства бывают для:
Перепускной узел турбины сбрасывает выхлоп газов, уменьшая силу напора в коллекторе. Тем самым он защищает двигатель от перегрева.
В топливном трубопроводе переливной узел регулирует в ней скорость подачи бензина тем, что сливает излишек, закачиваемый к двигателю бензонасосом, назад в топливный бак.
Особенности монтажа
Конкретное место установки перепускного устройства зависит от схемы и типа трубопровода. Клапан может встраиваться в дополнительный отводной контур. Для отопительных систем замкнутого цикла сброс излишнего давления проводится в трубопровод обратного направления. Допускается также его применение в качестве предохранительного вентиля, с настройкой на аварийное давление и со выводом жидкости в канализацию.
В схеме одноконтурной отопительной магистрали перепускной клапан устанавливается в байпасный отвод после нагнетательного насоса.
Перепускной клапан локальной системы отопления. Схема установки.
Для большей сохранности и безопасности всего отопительного контура желательно помимо перепускного устройства установить и дополнительные:
В многоконтурных системах перепускные клапана устанавливаются в каждом контуре.
Советы по выбору и примерные цены
Выбирая перепускное устройство, потребитель должен осознавать, что оно призвано обеспечить нормальную работу системы, постоянно поддерживать внутри неё стабильное давление.
Подобное приспособление должно отвечать следующим требованиям:
Пропускной прибор подбирается, прежде всего, исходя из типа рабочей среды трубопровода: газ, пар, вода.
Далее руководствуются определенными критериями.
Критерии
Основными их них являются:
Определенное значение рабочего давления, на которое необходимо настроить клапан, прописывается в техпаспорте.
Важно предусмотреть правильный монтаж, для чего необходимо грамотно все рассчитать с учетом параметров и конфигурации системы. К примеру, в сложной структуре отопления переливной регулятор лучше устанавливать за всеми насосами, применять дополнительно обратные затворы для их защиты.
Следует обращать внимание на надежность поставщиков, чтобы не нарваться на поддельные изделия.
Примерная цена на перепускные клапаны бытового применения варьируется от 1700 до 5 200 рублей. Промышленные образцы, оснащенные измерительными приборами, фланцами, с широким диапазоном настроек стоят гораздо дороже.
Так, указанный на фото, переливной угловой клапан с DN ¾», рассчитанный на 0,06-0,36 bar, с настроечной головкой, обойдется в 1680 рублей. Его устанавливают для обеспечения нормальной работы насоса. Сливает излишки теплоносителя при превышении давления в радиаторах в обратку.
Если придется приобретать перепускное устройство для автомобиля, необходимо учитывать все особенности предыдущего, не гнаться за дешевыми подделками.
Технические характеристики
Основные величины, определяющие возможности работы перепускных устройств в системе:
Регулировочная шкала с настроечным движком