Радиация и рентгеновское излучение в чем отличие

Виды радиоактивных излучений

Радиация и рентгеновское излучение в чем отличие. Смотреть фото Радиация и рентгеновское излучение в чем отличие. Смотреть картинку Радиация и рентгеновское излучение в чем отличие. Картинка про Радиация и рентгеновское излучение в чем отличие. Фото Радиация и рентгеновское излучение в чем отличие

Навигация по статье:

Радиация и виды радиоактивных излучений, состав радиоактивного (ионизирующего) излучения и его основные характеристики. Действие радиации на вещество.

Что такое радиация

Для начала дадим определение, что такое радиация:

Радиоактивное (ионизирующее) излучение можно разделить на несколько типов, в зависимости от вида элементов из которого оно состоит. Разные виды излучения вызваны различными микрочастицами и поэтому обладают разным энергетическим воздействие на вещество, разной способностью проникать сквозь него и как следствие различным биологическим действием радиации.

Альфа излучение

Радиация и рентгеновское излучение в чем отличие. Смотреть фото Радиация и рентгеновское излучение в чем отличие. Смотреть картинку Радиация и рентгеновское излучение в чем отличие. Картинка про Радиация и рентгеновское излучение в чем отличие. Фото Радиация и рентгеновское излучение в чем отличие

Альфа (α) излучение возникает при распаде нестабильных изотопов элементов.

Альфа частицы обладают большой массой и излучаются с относительно невысокой скоростью в среднем 20 тыс. км/с, что примерно в 15 раз меньше скорости света. Поскольку альфа частицы очень тяжелые, то при контакте с веществом, частицы сталкиваются с молекулами этого вещества, начинают с ними взаимодействовать, теряя свою энергию и поэтому проникающая способность данных частиц не велика и их способен задержать даже простой лист бумаги.

Однако альфа частицы несут в себе большую энергию и при взаимодействии с веществом вызывают его значительную ионизацию. А в клетках живого организма, помимо ионизации, альфа излучение разрушает ткани, приводя к различным повреждениям живых клеток.

Из всех видов радиационного излучения, альфа излучение обладает наименьшей проникающей способностью, но последствия облучения живых тканей данным видом радиации наиболее тяжелые и значительные по сравнению с другими видами излучения.

Облучение радиацией в виде альфа излучения может произойти при попадании радиоактивных элементов внутрь организма, например, с воздухом, водой или пищей, а также через порезы или ранения. Попадая в организм, данные радиоактивные элементы разносятся током крови по организму, накапливаются в тканях и органах, оказывая на них мощное энергетическое воздействие. Поскольку некоторые виды радиоактивных изотопов, излучающих альфа радиацию, имеют продолжительный срок жизни, то попадая внутрь организма, они способны вызвать в клетках серьезные изменения и привести к перерождению тканей и мутациям.

Радиоактивные изотопы фактически не выводятся с организма самостоятельно, поэтому попадая внутрь организма, они будут облучать ткани изнутри на протяжении многих лет, пока не приведут к серьезным изменениям. Организм человека не способен нейтрализовать, переработать, усвоить или утилизировать, большинство радиоактивных изотопов, попавших внутрь организма.

Нейтронное излучение

Радиация и рентгеновское излучение в чем отличие. Смотреть фото Радиация и рентгеновское излучение в чем отличие. Смотреть картинку Радиация и рентгеновское излучение в чем отличие. Картинка про Радиация и рентгеновское излучение в чем отличие. Фото Радиация и рентгеновское излучение в чем отличие

Не обладая зарядом, нейтронное излучение сталкиваясь с веществом, слабо взаимодействует с элементами атомов на атомном уровне, поэтому обладает высокой проникающей способностью. Остановить нейтронное излучение можно с помощью материалов с высоким содержанием водорода, например, емкостью с водой. Так же нейтронное излучение плохо проникает через полиэтилен.

Нейтронное излучение при прохождении через биологические ткани, причиняет клеткам серьезный ущерб, так как обладает значительной массой и более высокой скоростью чем альфа излучение.

Бета излучение

Радиация и рентгеновское излучение в чем отличие. Смотреть фото Радиация и рентгеновское излучение в чем отличие. Смотреть картинку Радиация и рентгеновское излучение в чем отличие. Картинка про Радиация и рентгеновское излучение в чем отличие. Фото Радиация и рентгеновское излучение в чем отличие

Бета (β) излучение возникает при превращении одного элемента в другой, при этом процессы происходят в самом ядре атома вещества с изменением свойств протонов и нейтронов.

При бета излучении, происходит превращение нейтрона в протон или протона в нейтрон, при этом превращении происходит излучение электрона или позитрона (античастица электрона), в зависимости от вида превращения. Скорость излучаемых элементов приближается к скорости света и примерно равна 300 000 км/с. Излучаемые при этом элементы называются бета частицы.

Имея изначально высокую скорость излучения и малые размеры излучаемых элементов, бета излучение обладает более высокой проникающей способностью чем альфа излучение, но обладает в сотни раз меньшей способность ионизировать вещество по сравнению с альфа излучением.

Бета радиация с легкостью проникает сквозь одежду и частично сквозь живые ткани, но при прохождении через более плотные структуры вещества, например, через металл, начинает с ним более интенсивно взаимодействовать и теряет большую часть своей энергии передавая ее элементам вещества. Металлический лист в несколько миллиметров может полностью остановить бета излучение.

Если альфа радиация представляет опасность только при непосредственном контакте с радиоактивным изотопом, то бета излучение в зависимости от его интенсивности, уже может нанести существенный вред живому организму на расстоянии несколько десятков метров от источника радиации.

Если радиоактивный изотоп, излучающий бета излучение попадает внутрь живого организма, он накапливается в тканях и органах, оказывая на них энергетическое воздействие, приводя к изменениям в структуре тканей и со временем вызывая существенные повреждения.

Некоторые радиоактивные изотопы с бета излучением имеют длительный период распада, то есть попадая в организм, они будут облучать его годами, пока не приведут к перерождению тканей и как следствие к раку.

Гамма излучение

Радиация и рентгеновское излучение в чем отличие. Смотреть фото Радиация и рентгеновское излучение в чем отличие. Смотреть картинку Радиация и рентгеновское излучение в чем отличие. Картинка про Радиация и рентгеновское излучение в чем отличие. Фото Радиация и рентгеновское излучение в чем отличие

Гамма радиация сопровождает процесс распада атомов вещества и проявляется в виде излучаемой электромагнитной энергии в виде фотонов, высвобождающихся при изменении энергетического состояния ядра атома. Гамма лучи излучаются ядром со скоростью света.

Когда происходит радиоактивный распад атома, то из одних веществ образовываются другие. Атом вновь образованных веществ находятся в энергетически нестабильном (возбужденном) состоянии. Воздействую друг на друга, нейтроны и протоны в ядре приходят к состоянию, когда силы взаимодействия уравновешиваются, а излишки энергии выбрасываются атомом в виде гамма излучения

Гамма излучение обладает высокой проникающей способностью и с легкостью проникает сквозь одежду, живые ткани, немного сложнее через плотные структуры вещества типа металла. Чтобы остановить гамма излучение потребуется значительная толщина стали или бетона. Но при этом гамма излучение в сто раз слабее оказывает действие на вещество чем бета излучение и десятки тысяч раз слабее чем альфа излучение.

Рентгеновское излучение

Рентгеновское излучение сходно по действию с гамма излучением, но обладает меньшей проникающей способностью, потому что имеет большую длину волны.

Рассмотрев различные виды радиоактивного излучения, видно, что понятие радиация включает в себя совершенно различные виды излучения, которые оказывают разное воздействие на вещество и живые ткани, от прямой бомбардировки элементарными частицами (альфа, бета и нейтронное излучение) до энергетического воздействия в виде гамма и рентгеновского излечения.

Каждое из рассмотренных излучений опасно!

Сравнительная таблица с характеристиками различных видов радиации

характеристикаВид радиации
Альфа излучениеНейтронное излучениеБета излучениеГамма излучениеРентгеновское излучение
излучаютсядва протона и два нейтронанейтроныэлектроны или позитроныэнергия в виде фотоновэнергия в виде фотонов
проникающая способностьнизкаявысокаясредняявысокаявысокая
облучение от источникадо 10 смкилометрыдо 20 мсотни метровсотни метров
скорость излучения20 000 км/с40 000 км/с300 000 км/с300 000 км/с300 000 км/с
ионизация, пар на 1 см пробега30 000от 3000 до 5000от 40 до 150от 3 до 5от 3 до 5
биологическое действие радиациивысокоевысокоесреднеенизкоенизкое

Как видно из таблицы, в зависимости от вида радиации, излучение при одной и той же интенсивности, например в 0.1 Рентген, будет оказать разное разрушающее действие на клетки живого организма. Для учета этого различия, был введен коэффициент k, отражающий степень воздействия радиоактивного излучения на живые объекты.

Коэффициент k
Вид излучения и диапазон энергийВесовой множитель
Фотоны всех энергий (гамма излучение)1
Электроны и мюоны всех энергий (бета излучение)1
Нейтроны с энергией 20 МэВ (нейтронное излучение)5
Протоны с энергий > 2 МэВ (кроме протонов отдачи)5
Альфа-частицы, осколки деления и другие тяжелые ядра (альфа излучение)20

Чем выше «коэффициент k» тем опаснее действие определенного вида радиции для тканей живого организма.

Видео: Виды радиации

Источник

«Отношение людей к той или иной опасности определяется тем, насколько хорошо она им знакома».

Настоящий материал – обобщённый ответ на многочисленные вопросы, возникающие пользователей приборов для обнаружения и измерения радиации в бытовых условиях.
Минимальное использование специфической терминологии ядерной физики при изложении материала поможет вам свободно ориентироваться этой в экологической проблеме, не поддаваясь радиофобии, но и без излишнего благодушия.

Опасность РАДИАЦИИ реальная и мнимая

«Один из первых открытых природных радиоактивных элементов был назван «радием»
— в переводе с латинского-испускающий лучи, излучающий».

Каждого человека в окружающей среде подстерегают различные явления, оказывающие на него влияние. К ним можно отнести жару, холод, магнитные и обычные бури, проливные дожди, обильные снегопады, сильные ветры, звуки, взрывы и др.

Благодаря наличию органов чувств, отведенных ему природой, он может оперативно реагировать на эти явления с помощью, например, навеса от солнца, одежды, жилья, лекарств, экранов, убежищ и т.д.

Ионизирующее излучение

Протоны частицы имеющие положительный заряд, равный по абсолютной величине заряду электронов.

Нейтроны нейтральные, не обладающие зарядом, частицы. Число электронов в атоме в точности равно числу протонов в ядре, поэтому каждый атом в целом нейтрален. Масса протона почти в 2000 раз больше массы электрона.

Радиация и рентгеновское излучение в чем отличие. Смотреть фото Радиация и рентгеновское излучение в чем отличие. Смотреть картинку Радиация и рентгеновское излучение в чем отличие. Картинка про Радиация и рентгеновское излучение в чем отличие. Фото Радиация и рентгеновское излучение в чем отличие

Источники радиации

Источники радиации бывают естественными, присутствующими в природе, и не зависящими от человека.

Еще один, как правило менее важный, источник поступления радона в помещения представляет собой вода и природный газ, используемый для приготовления пищи и обогрева жилья.

Концентрация радона в обычно используемой воде чрезвычайно мала, но вода из глубоких колодцев или артезианских скважин содержит очень много радона. Однако основная опасность исходит вовсе не от питья воды, даже при высоком содержании в ней радона. Обычно люди потребляют большую часть воды в составе пищи и в виде горячих напитков, а при кипячении воды или приготовлении горячих блюд радон практически полностью улетучивается. Гораздо большую опасность представляет попадание паров воды с высоким содержанием радона в легкие вместе с вдыхаемым воздухом, что чаще всего происходит в ванной комнате или парилке (парной).

ВОЗДЕЙСТВИЕ ИОНИЗИРУЮЩЕГО ИЗЛУЧЕНИЯ НА ТКАНИ ОРГАНИЗМА

Повреждений, вызванных в живом организме ионизирующим излучением, будет тем больше, чем больше энергии оно передаст тканям; количество этой энергии называется дозой, по аналогии с любым веществом поступающим в организм и полностью им усвоенным. Дозу излучения организм может получить независимо от того, находится ли радионуклид вне организма или внутри него.

Количество энергии излучения, поглощенное облучаемыми тканями организма, в пересчете на единицу массы называется поглощенной дозой и измеряется в Греях. Но эта величина не учитывает того, что при одинаковой поглощенной дозе альфа-излучение гораздо опаснее (в двадцать раз) бета или гамма-излучений. Пересчитанную таким образом дозу называют эквивалентной дозой; ее измеряют в единицах называемых Зивертами.

Радиация и рентгеновское излучение в чем отличие. Смотреть фото Радиация и рентгеновское излучение в чем отличие. Смотреть картинку Радиация и рентгеновское излучение в чем отличие. Картинка про Радиация и рентгеновское излучение в чем отличие. Фото Радиация и рентгеновское излучение в чем отличиеСледует учитывать также, что одни части тела более чувствительны, чем другие: например, при одинаковой эквивалентной дозе облучения, возникновение рака в легких более вероятно, чем в щитовидной железе, а облучение половых желез особенно опасно из-за риска генетических повреждений. Поэтому дозы облучения человека следует учитывать с различными коэффициентами. Умножив эквивалентные дозы на соответствующие коэффициенты и просуммировав по всем органам и тканям, получим эффективную эквивалентную дозу, отражающую суммарный эффект облучения для организма; она также измеряется в Зивертах.

Заряженные частицы.

Проникающие в ткани организма альфа- и бета-частицы теряют энергию вследствие электрических взаимодействий с электронами тех атомов, близ которых они проходят. (Гамма-излучение и рентгеновские лучи передают свою энергию веществу несколькими способами, которые в конечном счете также приводят к электрическим взаимодействиям).

Электрические взаимодействия.

За время порядка десяти триллионных секунды после того, как проникающее излучение достигнет соответствующего атома в ткани организма, от этого атома отрывается электрон. Последний заряжен отрицательно, поэтому остальная часть исходно нейтрального атома становится положительно заряженной. Этот процесс называется ионизацией. Оторвавшийся электрон может далее ионизировать другие атомы.

Физико-химические изменения.

И свободный электрон, и ионизированный атом обычно не могут долго пребывать в таком состоянии и в течение следующих десяти миллиардных долей секунды участвуют в сложной цепи реакций, в результате которых образуются новые молекулы, включая и такие чрезвычайно реакционно способные, как «свободные радикалы».

Химические изменения.

В течение следующих миллионных долей секунды образовавшиеся свободные радикалы реагируют как друг с другом, так и с другими молекулами и через цепочку реакций, еще не изученных до конца, могут вызвать химическую модификацию важных в биологическом отношении молекул, необходимых для нормального функционирования клетки.

Биологические эффекты.

Биохимические изменения могут произойти как через несколько секунд, так и через десятилетия после облучения и явиться причиной немедленной гибели клеток или изменений в них.

ЕДИНИЦЫ ИЗМЕРЕНИЯ РАДИОАКТИВНОСТИ

Единицы активности радионуклида.
Представляют собой число распадов в единицу времени.Единицы поглощённой дозы.
Представляют собой количество энергии ионизирующего излучения, поглощенное единицей массы какого-либо физического тела, например тканями организма.1 Зв = 1 Гр = 1 Дж/кг (для бета и гамма)
1 мкЗв = 1/1000000 Зв
1 бер = 0.01 Зв = 10 мЗв Единицы эквивалентной дозы.Единицы эквивалентной дозы.
Представляют собой единицу поглощенной дозы, умноженную на коэффициент, учитывающий неодинаковую опасность разных видов ионизирующего излучения.Единицы мощности дозы.
Представляют собой дозу полученную организмом за единицу времени.

Поскольку в кирпиче и бетоне в небольших дозах присутствуют радиоактивные элементы, доза возрастает еще на 1,5 мЗв/год. Наконец, из-за выбросов современных тепловых электростанций, работающих на угле, и при полетах на самолете человек получает до 4 мЗв/год. Итого существующий фон может достигать 10 мЗв/год, но в среднем не превышает 5 мЗв/год (0,5 бэр/год).

Такие дозы совершенно безвредны для человека. Предел дозы в добавление к существующему фону для ограниченной части населения в зонах повышенной радиации установлен 5 мЗв/год (0,5 бэр/год), т.е. с 300-кратным запасом. Для персонала, работающего с источниками ионизирующих излучений, установлена предельно допустимая доза 50 мЗв/ год (5 бэр/год), т.е. 28 мкЗв/ч при 36-часовой рабочей неделе.

ЧЕМ ИЗМЕРЯЮТ РАДИАЦИЮ

Доктор физико-математических наук, Профессор МИФИ Н.М. Гаврилов
статья написана для компании «Кварта-Рад»

Источник

Радиация в медицине и жизни: почему не стоит бояться УЗИ, рентгена и микроволновки

УЗИ, вайфай, микроволновые печи, магнитно-резонансная томография: какое излучение вредное, что нужно делать, чтобы себе не навредить, а чего не стоит бояться.

Читайте «Хайтек» в

Какая радиация бывает

Радиация — это в узком значении ионизирующее излучение, то есть вид энергии, которая способна выбивать электроны из атомов и делать их ионами. Эти лучи прямо или косвенно могут повреждать ДНК и клеточные мембраны.

Часто радиацию и ионизирующее излучение не разделяют, однако именно ионизирующее излучение повреждает живые клетки, вызывает поломки ДНК. Поэтому в широком смысле радиация — это любое излучение.

Если излучение не ионизирующее, оно все равно может быть вредным: например солнечная радиация может вызвать ожоги.

Кто излучает радиацию

Второй процесс идет в недрах звезд, включая Солнце. За пределами атмосферы Земли и ее магнитного поля солнечное излучение включает в себя не только свет и тепло, но также рентгеновские лучи, жесткий ультрафиолет и разогнанные до внушительной скорости протоны.

Протоны наиболее опасны для оказавшихся в дальнем космосе. В год повышенной солнечной активности попадание под пучок протонов даст смертельную дозу облучения за считаные минуты. Это примерно соответствует фону вблизи разрушенного реактора Чернобыльской АЭС.

Однако ближе нашему пониманию другие источники радиации, например горные породы, включая гранит и уголь, содержат уран, торий и испускают газ радон. Так что если дом построен на скальных породах и плохо проветривается, то из-за радона у жителей повышается риск заболеть раком легких. Также вредно в этом плане курение: полоний-210 в табачном дыме активный и опасный изотоп.

Все это составляющие естественного радиационного фона: человеческий организм приспособился жить в таких условиях.

Бытовые и медицинские приборы с радиацией

Энергии микроволн недостаточно для того, чтобы оторвать электроны от ядер атомов. Медики и биологи спорят о том, как СВЧ-излучение в малых дозах может влиять на человеческий организм, но пока результаты скорее обнадеживающие: сопоставление целого ряда разных масштабных исследований указывает на то, что связи между телефонами и злокачественными опухолями нет.

Есть много методов, которые позволяет посмотреть буквально внутри человека и все они считаются опасными, хотя по суть своей очень разные. Например в УЗИ используют неионизирующее излучение — это волны с небольшой энергией, они не могут повреждать ДНК, но могут, например, нагревать ткани.

Ультразвук не относится к ионизирующему излучению, которое повреждает ДНК, также доказано, что никакого отрицательного влияния на женщину или плод он не оказывает.

Не смотря на это, УЗИ лучше делать только в тех случаях, когда вам его назначил врач.

МРТ действует по такому же принципу, что и УЗИ. И в МРТ, и в УЗИ используют неионизирующее излучение.

Во время компьютерной томографии (КТ) и рентгенографии человека действительно облучают. Этот метод основан на ионизирующем излучении, то есть том, которое может отрывать электроны в атомах, создавая таким образом ионы, и провоцировать мутации в ДНК. Ионизирующее излучение в больших дозах может увеличивать риск развития онкологических заболеваний.

Для того, чтобы понять на сколько КТ действительно опасно или нет, вред ионизирующего излучения оценили преимущественно из последствий крупных катастроф, например, взрыва атомной бомбы в Хиросиме и чернобыльской аварии. Поэтому нельзя с уверенностью говорить о вреде КТ и рентгенографии: все-таки дозы облучения в этих случаях довольно маленькие. Возможно даже, такие методы никак не вредят здоровью — или вредят, но не так сильно, как принято думать.

Однако при беременности есть ряд отдельных показаний. Снизить количество облучения, если процедура необходима, можно, например, если делать снимок со спины. Рентгенография головы, шеи, груди и конечностей никак особенно не вредит плоду, особенно если использовать свинцовый фартук.

Компьютерная томография разных частей тела тоже относительно безобидна, если накрыть живот. Кроме того, компьютерную томографию можно делать чуть более низкого качества, чтобы уменьшить лучевую нагрузку.

Большинство исследований не выходит за дозу поглощенной радиации в 0,05 Гр (5 рад). Если же доза в 0,1 Гр (10 рад) то на скоре до 14 дней это никак не влияет на плод, но на большем сроке есть риск, что плод будет развиваться с задержкой. Облучение после 20–25 недели относительно безопасно.

Вред от вайфая также не доказан. Это радиочастотное излучение, и у роутера оно гораздо слабее, чем у мобильного телефона.

И он тоже не опасен: сопоставление целого ряда разных масштабных исследований указывает на то, что связи между телефонами и злокачественными опухолями нет.

От телефонов идет неионизирующее радиочастотное излучение, влияние которого на человека изучено не на 100 процентов. Но пока, как сообщают в Центрах по контролю и профилактике заболеваний США, нет причин отказываться от мобильных телефонов.

Радиация и другая техника

Радиация может оказывать разрушительный эффект при долгом и методичном воздействии. Микросхемы на аппаратах в межпланетном пространстве, где много космических лучей, приходится специально адаптировать для работы в условиях повышенного радиационного фона.

Именно из-за этого производительность процессора, скажем, на марсоходе или юпитерианском зонде Juno весьма скромна по земным меркам: за устойчивость к облучению конструкторы расплачиваются габаритами и скоростью работы.

Кто больше всего подвержен радиации

Дети в большей степени подвержены негативному влиянию радиации. Облучение эмбриона или плода может привести к разнообразным тяжелым последствиям: от гибели до ухудшения когнитивных способностей в дальнейшем. Но многое зависит от дозы, и в случае, когда доза поглощенной радиации меньше 0,1 Гр, ни о каких последствиях не известно.

Источник

Радиация и рентгеновское излучение в чем отличие

Радиация и рентгеновское излучение в чем отличие. Смотреть фото Радиация и рентгеновское излучение в чем отличие. Смотреть картинку Радиация и рентгеновское излучение в чем отличие. Картинка про Радиация и рентгеновское излучение в чем отличие. Фото Радиация и рентгеновское излучение в чем отличие

Радиация и рентгеновское излучение в чем отличие. Смотреть фото Радиация и рентгеновское излучение в чем отличие. Смотреть картинку Радиация и рентгеновское излучение в чем отличие. Картинка про Радиация и рентгеновское излучение в чем отличие. Фото Радиация и рентгеновское излучение в чем отличие

Радиация и рентгеновское излучение в чем отличие. Смотреть фото Радиация и рентгеновское излучение в чем отличие. Смотреть картинку Радиация и рентгеновское излучение в чем отличие. Картинка про Радиация и рентгеновское излучение в чем отличие. Фото Радиация и рентгеновское излучение в чем отличие

Острое воздействие на здоровье, такое как ожог кожи, может возникнуть, когда доза облучения превышает определенные уровни. Низкие дозы ионизирующего излучения увеличивают риск развития более долгосрочных последствий, таких как рак. Впервые повреждающее действие ионизирующего излучения было описано в 1896, когда у ряда больных, которым делали рентгеновские снимки, а также у врачей, их выполнявших, были обнаружены рентгеновские дерматиты. Такая же картина поражения кожных покровов была выявлена после воздействия радия. Пьер Кюри, желая выяснить действие излучения радия на кожу, облучил собственную руку!

Воздействие ионизирующего излучения на организм человека может быть внутренним (когда радионуклиды попадают во внутренние среды организма) и внешним (когда радиоактивные частицы оседает на коже или одежде). Воздействие может также произойти в результате облучения от внешнего источника (например, от рентгеновского оборудования).

Радиационное повреждение тканей зависит от полученной дозы облучения. Эффективная доза используется для измерения ионизирующего излучения с точки зрения его потенциала причинить вред и выражается в Зивертах (Зв). 1 Зв это очень существенная величина (пороговая доза острой лучевой болезни), поэтому обычно применяются меньшие ее единицы, такие как миллизиврет (мЗв) и микрозиверт (мкЗв). Соответственно, 1 Зв = 1000 мЗв, а 1 мЗв = 1000 мкЗв. Скажем, 10 мкЗв это средняя доза облучения космической радиации, которую получит пассажир авиалайнера в течение 3 часов полета. А 10 мЗв – доза от одной компьютерной томографии.

Радиация и рентгеновское излучение в чем отличие. Смотреть фото Радиация и рентгеновское излучение в чем отличие. Смотреть картинку Радиация и рентгеновское излучение в чем отличие. Картинка про Радиация и рентгеновское излучение в чем отличие. Фото Радиация и рентгеновское излучение в чем отличие

Если доза является низкой или воздействует длительный период времени, риск развития различных патологий существенно снижается, поскольку увеличивается вероятность восстановления поврежденных тканей. Тем не менее, долгосрочные эффекты, такие как рак, могут проявиться даже спустя десятилетия. Этот риск выше у детей и подростков, так как они намного более чувствительны к воздействию радиации.

Радиационная безопасность населения достигается путем ограничения воздействия от всех основных видов облучения:

техногенные источники при их нормальной эксплуатации (различные производственные установки);

техногенные источники в результате радиационной аварии;

природные источники;

медицинские источники (рентгеновские аппараты).

Годовая доза облучения населения не должна превышать основные пределы доз, указанных в Нормах радиационной безопасности (НРБ-99/2009. СанПиН 2.6.1.2523-09). В настоящий момент эта величина равна 1 мЗв в год в среднем за любые последовательные 5 лет, но не более 5 мЗв в один год. Здесь учитывается радиологическая нагрузка на организм от потребляемых продуктов, атмосферного воздуха, условий проживания, а так же медицинские диагностические манипуляции с использованием ионизирующего излучения.

В целом, в условиях повседневности радиация не представляет для нас серьезной опасности. В бытовых условиях человек редко может столкнуться с опасными источниками радиации, а если такое происходит, то, как правило, в силу невежества или халатности работников предприятий, где используются источники ионизирующего излучения.

Помните, что, несмотря на легкодоступные диагностические сервисы, следует проводить радиологические исследования (КТ, рентген, флюорография) ТОЛЬКО по назначению врача.

Вопреки распространенному мнению, нет никаких научных доказательств способности алкоголя выводить радиацию из организма. То же самое касается препаратов йода – его применение оправдано только в случае радиационной аварии при нахождении пострадавших в 30 км зоне ЧС для защиты щитовидный железы от попадания радиоактивного йода. Однако йодопротекторы используются строго по инструкции и при вышеуказанных условиях. Вне зоны поражения пить таблетки или раствор йода, мазать шею может быть опасно!

Важным защитным приемом для укрепления организма при неблагоприятном радиологическом фоне (что актуально для некоторых биогеохимических провинций) является организация оптимального питания. Основными принципами построения рационов питания на загрязненной радиоактивными изотопами территории являются увеличение количества белков до 15% калорийности рациона и повышение в рационе на 20-50% по сравнению с рекомендуемыми возрастными нормами содержания витаминов-антиоксидантов: Е, С, А, биофлавоноидов, а пищевых волокон на 30%. Необходимо также обеспечить повышенное поступление минеральных веществ: кальция, калия, йода, магния, железа, селена. Для достижения этих задач необходимо достаточное содержание в рационе нежирных сортов мяса, птицы, рыбы, молочных продуктов, широкое использование свежих овощей, фруктов и зелени, добытых и выращенных в экологически благоприятных районах, так как сами по себе продукты накапливают радионуклиды, если выращиваются на загрязненной территории.

В своей жизни мы постоянно сталкиваемся с влиянием ионизирующего излучения, но волноваться не стоит — вред здоровью от «повседневных» природных источников значительно меньше вреда от беспокойства по этому поводу.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *