Равное неравенство что такое

Понятие неравенства, связанные определения

Неравенство – обратная сторона равенства. Материал данной статьи дает определение неравенства и начальную информацию о нем в разрезе математики.

Определение неравенства

Понятие неравенства, как и понятие равенства, связывается с моментом сравнения двух объектов. В то время как равенство означает «одинаковы», то неравенство, напротив, свидетельствует о различиях объектов, которые сравниваются. К примеру, Равное неравенство что такое. Смотреть фото Равное неравенство что такое. Смотреть картинку Равное неравенство что такое. Картинка про Равное неравенство что такое. Фото Равное неравенство что такоеи Равное неравенство что такое. Смотреть фото Равное неравенство что такое. Смотреть картинку Равное неравенство что такое. Картинка про Равное неравенство что такое. Фото Равное неравенство что такое— одинаковые объекты или равные. Равное неравенство что такое. Смотреть фото Равное неравенство что такое. Смотреть картинку Равное неравенство что такое. Картинка про Равное неравенство что такое. Фото Равное неравенство что такоеи Равное неравенство что такое. Смотреть фото Равное неравенство что такое. Смотреть картинку Равное неравенство что такое. Картинка про Равное неравенство что такое. Фото Равное неравенство что такое— объекты, отличающиеся друг от друга или неравные.

Неравенство объектов определяется по смысловой нагрузке такими словами, как выше – ниже (неравенство по признаку высоты); толще – тоньше (неравенство по признаку толщины); длиннее – короче (неравенство по признаку длины) и так далее.

Возможно рассуждать как о равенстве-неравенстве объектов в целом, так и о сравнении их отдельных характеристик. Допустим, заданы два объекта: Равное неравенство что такое. Смотреть фото Равное неравенство что такое. Смотреть картинку Равное неравенство что такое. Картинка про Равное неравенство что такое. Фото Равное неравенство что такоеи Равное неравенство что такое. Смотреть фото Равное неравенство что такое. Смотреть картинку Равное неравенство что такое. Картинка про Равное неравенство что такое. Фото Равное неравенство что такое. Без сомнений, эти объекты не являются одинаковыми, т.е. в целом они не равны: по признаку размера и цвета. Но, в то же время, мы можем утверждать, что равны их формы – оба объекта являются кругами.

В контексте математики смысловая нагрузка неравенства сохраняется. Однако, в этом случае речь идет о неравенстве математических объектов: чисел, значений выражений, значений величин (длина, площадь и т.д.), векторов, фигур и т.п.

Не равно, больше, меньше

В зависимости от целей поставленной задачи ценным можем являться уже просто факт выяснения неравенства объектов, но обычно вслед за установлением факта неравенства происходит выяснение того, какая все же величина больше, а какая – меньше.

Значение слов «больше» и «меньше» нам интуитивно знакомо с самого начала нашей жизни. Очевидным является навык определять превосходство объекта по размеру, количеству и т.д. Но в конечном счете любое сравнение приводит нас к сравнению чисел, которые определяют некоторые характеристики сравниваемых объектов. По сути, мы выясняем, какое число больше, а какое – меньше.

Утром температура воздуха составила 10 градусов по Цельсию; в два часа дня этот показатель составил 15 градусов. На основе сравнения натуральных чисел мы можем утверждать, что значение температуры утром было меньше, чем ее значение в два часа дня (или в два часа дня температура увеличилась, стала больше, чем была температура утром).

Запись неравенств с помощью знаков

Существуют общепринятые обозначения для записи неравенств:

Подробнее их смысл разберем ниже. Дадим определение неравенств по виду их записи.

Строгие и нестрогие неравенства

Знаки строгих неравенств – это знаки «больше» и «меньше»: > и Неравенства, составленные с их помощью – строгие неравенства.

Верные и неверные неравенства

Верное неравенство – то неравенство, которое соответствует указанному выше смыслу неравенства. В ином случае оно является неверным.

Приведем простые примеры для наглядности:

Неравенство 5 ≠ 5 является неверным, поскольку на самом деле числа 5 и 5 равны.

Или такое сравнение:

Аналогичными по смыслу термину «верное неравенство» являются фразы «справедливое неравенство», «имеет место неравенство» и т.д.

Свойства неравенств

Опишем свойства неравенств. Очевидный факт, что объект никак не может быть неравным самому себе, и это есть первое свойство неравенства. Второе свойство звучит так: если первый объект не равен второму, то и второй не равен первому.

Опишем свойства, соответствующие знакам «больше» или «меньше»:

Знакам нестрогих неравенств также присущи некоторые свойства:

Двойные, тройные и т.п. неравенства

Источник

Решение линейных неравенств

Равное неравенство что такое. Смотреть фото Равное неравенство что такое. Смотреть картинку Равное неравенство что такое. Картинка про Равное неравенство что такое. Фото Равное неравенство что такое

Основные понятия

Алгебра не всем дается легко с первого раза. Чтобы не запутаться во всех темах и правилах, важно изучать темы последовательно и по чуть-чуть. Сегодня узнаем, как решать линейные неравенства.

Линейные неравенства — это неравенства вида:

где a и b — любые числа, a ≠ 0, x — неизвестная переменная. Как решаются неравенства рассмотрим далее в статье.

Решение — значение переменной, при котором неравенство становится верным.

Решить неравенство значит сделать так, чтобы в левой части осталось только неизвестное в первой степени с коэффициентом равном единице.

Типы неравенств

Линейные неравенства: свойства и правила

Вспомним свойства числовых неравенств:

Если же а b и c > d, то а + c > b + d.

Если а 8 почленно вычесть 3 > 2, получим верный ответ 9 > 6. Если из 12 > 8 почленно вычесть 7 > 2, то полученное будет неверным.

Если а d, то а – c b, m — положительное число, то mа > mb и

Обе части можно умножить или разделить на одно положительное число (знак при этом остаётся тем же).

Если же а > b, n — отрицательное число, то nа

Обе части можно умножить или разделить на одно отрицательное число, при этом знак поменять на противоположный.

Если а 0, то аc b, где а, b > 0, то а2 > b2, и если а b, где а, b > 0, то
b» height=»45″ src=»https://lh5.googleusercontent.com/MuRDPQeqxIZvVG_mHVaktFp6nlIEEbz8zdRs1ZW8CZbZacJrS4aKzrDyhKxXpJvc35TSAgiRpqr-63sGzL9_sPU80vFhR0ZDAmSmRFZtwEldDkWRttfSGuaJJIb7xWxZDugU3xTt»>

Решением неравенства с одной переменной называется значение переменной, которое трансформирует его в верное числовое неравенство.

Чтобы упростить процесс нахождения корней неравенства, нужно провести равносильные преобразования — то заменить данное неравенство более простым. При этом все решения должны быть сохранены без возникновения посторонних корней.

Свойства выше помогут нам использовать следующие правила.

Правила линейных неравенств

Решение линейных неравенств

Со школьных уроков мы помним, что у неравенств нет ярко выраженных различий, поэтому рассмотрим несколько определений.

Неравенства ax + b > 0 и ax > c равносильные, так как получены переносом слагаемого из одной части в другую.

Определение 3. Линейные неравенства с одной переменной x выглядят так:

где a и b — действительные числа. А на месте x может быть обычное число.

Равносильные преобразования

Рассмотрим пример: 0 * x + 5 > 0.

Как решаем:

Метод интервалов

Метод интервалов можно применять для линейных неравенств, когда значение коэффициента x не равно нулю.

Метод интервалов это:

Если a ≠ 0, тогда решением будет единственный корень — х₀;

Для этого найдем значения функции в точках на промежутке;

Как решаем:

Изобразим координатную прямую с отмеченной выколотой точкой, так как неравенство является строгим.

Чтобы определить на промежутке (−∞, 2), необходимо вычислить функцию y = −6x + 12 при х = 1. Получается, что −6 * 1 + 12 = 6, 6 > 0. Знак на промежутке является положительным.

По чертежу делаем вывод, что решение имеет вид (−∞, 4) или x

Графический способ

Смысл графического решения неравенств заключается в том, чтобы найти промежутки, которые необходимо изобразить на графике.

Алгоритм решения y = ax + b графическим способом

Рассмотрим пример: −5 * x − √3 > 0.

Как решаем

Ответ: (−∞, −√3 : 5) или x

Источник

Равенство и неравенство. Знаки: больше, меньше, равно

Равное неравенство что такое. Смотреть фото Равное неравенство что такое. Смотреть картинку Равное неравенство что такое. Картинка про Равное неравенство что такое. Фото Равное неравенство что такое

Математические знаки

Скорее всего, к первому классу ребенок уже отличает на слух и визуально, что горстка из десяти ягод больше трех штук. Чтобы внедрить в жизнь новые обозначения, посмотрим на знаки «больше», «меньше», «равно» в картинках.

Символ больше (>) — это когда острый нос галочки смотрит направо. Его нужно использовать, когда первое число больше второго:

Символ меньше (

Символ равенства (=) — это когда два коротких отрезка записаны горизонтально и параллельны друг другу. Используем его при сравнении двух одинаковых чисел:

Чтобы ребенку было легче запомнить схожие между собой знаки, можно применить игровой метод. Для этого нужно сравнить числа и определить в каком порядке они стоят. Далее ставим одну точку у наименьшего числа и две — рядом с наибольшим. Соединяем точки и получаем нужный знак. Вот так просто:

Равенство и неравенство

Что такое равенство в математике — это когда одно подобно по количеству другому и между ними можно поставить знак =.

Для примера посмотрим на картинку с изображением геометрических фигур. Справа и слева количество одинаковое, значит можно поставить символ «равно».

Наглядный пример неравенства изображен на картинке ниже. Слева видим три фигуры, а справа — четыре. При этом мы знаем, что три не равно четырем или еще так: три меньше четырех.

Урок в школе зачастую проходит перед учебником, тетрадью и доской. Дома же можно использовать компьютер и некоторые задания выполнять в онлайн-формате. Как найти знаки на клавиатуре? Ответ на картинке:

Типы неравенств

Источник

Что такое числовые выражения, равенства, неравенства и уравнения

Выражение

Числовое выражение — это числа, соединённые знаками арифметических действий: сложение, вычитание, умножение и деление.

Найти значение числового выражения — это значит выполнить все указанные арифметические действия и получить конкретное число.

Кроме арифметических действий выражения могут содержать скобки, которые влияют на порядок действий при решении выражения.

Пример 1:

Равенство

Равенства — это числа или выражения, соединённые знаком = (равно).

Равенство считается верным, если числа или числовые выражения слева и справа от знака =, имеют равное значение.

Равенство считается неверным, если числа или числовые выражения слева и справа от знака =, не равны (≠).

При решении равенств соблюдается следующий порядок действий:

Пример 2:

1) 5 = 7 — равенство неверно, так как 5 ≠ 7.

2) 36 : 2 = 6 • 3 — равенство верно, так как:

3) 48 + 9 = 54 — 1 — равенство неверно, так как:

Неравенство

Пример 3:

1) 5 > 7 — неравенство неверно, так как 5

3) 4 + 5 • 6 > (4 + 5) • 6 — неравенство неверно, так как:

Уравнение

Уравнение — это равенство, которое содержит неизвестное число, обозначенное какой-либо латинской буквой: x, y, a, b, z, d и т.д.

Корень уравнения — это число, при подставлении котрого вместо буквы в равенство делает это равенство верным.

Решить уравнение — это значит найти все возможные корни уравнения.

Порядок и правила решения уравнений зависят от того, к какому типу они относятся:

Источник

Что такое неравенство? Как решать неравенства?

Для начала неплохо бы разобраться, что же такое неравенство вообще, как оно устроено и что с ним можно (и нужно) делать. Разбираемся?

Что такое неравенство?

Говоря простым языком, берём любое уравнение и значок «=» (равно) заменяем на другой значок (>,

Уравнения бывают всякими — линейными, квадратными, дробными, показательными, логарифмическими, тригонометрическими, иррациональными и т.д.

Соответственно, и неравенства также бывают линейные, квадратные и… в общем, всякие.)

Теперь поговорим о значках неравенств. Что о них нужно знать? Неравенства со значками «>» (больше) или «

Сам значок обычно не оказывает существенного влияния на ход решения. Зато в самом конце решения, при оформлении окончательного ответа, смысл значка проявляется в полную силу! В чём мы с вами и убедимся на конкретных примерах.

Что ещё нужно знать о неравенствах? Неравенства, как и равенства, бывают верные и неверные. Здесь всё предельно ясно. Например, 2>1 — верное неравенство. А вот неравенство 2

Неравенства — ближайшие родственники уравнений. Стало быть, проблемы при решении уравнений будут автоматически приводить к полному провалу и в неравенствах. Срочно повторите решение основных типов уравнений, у кого проблемы! Я серьёзно.) Иначе в неравенствах будете тормозить нещадно… И не надейтесь, что при изложении, скажем, материала по решению квадратных неравенств я буду отдельно разжёвывать, что такое дискриминант или как рисовать график параболы.) Прошу быть к этому готовыми! Так что по ссылочкам-то гуляйте, гуляйте.)

Зачем нужны неравенства?

Вопрос резонный. Затем же, зачем нам нужны и уравнения. Для жизни.)

В обычной жизни неравенства вы видите повсюду. Причём не только видите, но и… решаете их! Сами того не замечая. Сомневаетесь?) Пожалуйста! Вот вам зашифрованные житейские примеры неравенств. Хранение при такой-то температуре (скажем, от 0°С до +25°С) — неравенство. Штраф за превышение скорости — неравенство. Распределение призовых мест в соревновании — тоже неравенство. Срок действия проездного на метро — неравенство. Опоздание на урок (поезд, самолёт) — и тут неравенство!

Одним словом, с неравенствами мы с вами сталкиваемся всякий раз, как только нам нужно оценивать или сравнивать какие-то величины. Совершенно любые. Это может быть температура в помещении, скорость автомобиля, время в пути, расходы в магазине, баланс денег на телефоне, рост, вес — да всё что угодно. Всё что мы можем выразить числом, как-то количественно оценить или с чем-то сравнить, приводит нас к понятию неравенства. Верного или неверного.)

Как решать неравенства?

Решение любого неравенства состоит из двух ключевых пунктов.

1. Тождественные преобразования неравенств.

2. Работа с числовой прямой.

Оба эти пункта — основы. Каждый из них одинаково важен. Если есть проблемы хотя бы в одном из них, то попытка решения любого, даже самого простенького неравенства, обречена на провал. Оно нам надо? Согласен, не надо.

Про первый пункт (тождественные преобразования) подробненько поговорим в этом уроке. Тут всё просто. Второй пункт (работа с числовой осью) поинтереснее будет. Его рассмотрим в следующем уроке.

Тождественные преобразования неравенств.

Тождественные преобразования неравенств очень похожи на тождественные преобразования уравнений. Собственно, именно в этом и таится основная засада в решении неравенств! Отличия проскакивают мимо головы и… приплыли.) Поэтому я особо выделю эти отличия.

1. Первое тождественное преобразование неравенств:

К обеим частям неравенства можно прибавить (или отнять) любое (но одинаковое!) число или выражение (в том числе и с переменной). Знак неравенства от этого не изменится.

На практике это преобразование выглядит как знакомый всем старый добрый перенос членов из одной части неравенства в другую со сменой знака. Со сменой знака члена, а не неравенства! Знак самого неравенства сохраняется.

Например, надо решить такое линейное неравенство:

Знак неравенства при переносе не трогаем!

Осталось слева привести подобные, а справа посчитать. Получим:

Это правильный ответ.

Если вы — новичок и пока не знаете, как решать линейные неравенства, не беда. В отдельном уроке порешаем. Я сейчас не об этом. А о том, что первое тождественное преобразование неравенств полностью совпадает с аналогичным преобразованием для уравнений! Один в один. А вот второе тождественное преобразование в неравенствах резко отличается от такового в уравнениях. К нему и переходим.

2. Второе тождественное преобразование неравенств:

2.1. Обе части неравенства можно умножить (разделить) на одно и то же положительное число. На любое положительное число. Знак неравенства при этом сохраняется.

2.2. Обе части неравенства можно умножить (разделить) на одно и то же отрицательное число. На любое отрицательное число. Знак неравенства при этом меняется на противоположный.

Вы ведь помните, что уравнение мы имеем право умножать или делить на что попало. И на число, и на выражение с иксом. Лишь бы не на ноль. Ему, уравнению, от этого хоть бы хны. Не меняется оно. А вот неравенства более чувствительны к умножению/делению.

Вот вам наглядный пример на долгую память. Возьмём неравенство, не вызывающее сомнений:

Умножим обе части на положительное число +2, получим:

А вот это уже откровенная ахинея! Бред! Ибо минус шесть никак не больше минус четырёх. Но… стоит только изменить знак неравенства на противоположный, как всё сразу становится на свои места:

Про бред и ахинею я не просто так ругаюсь. «Забыл(а) сменить знак неравенства…» – это самая распространённая ошибка в решении неравенств. Именно на этом несложном преобразовании столько учеников сыпется! Которые забывают… Вот и ругаюсь. Авось, запомнится…)

Самые внимательные, возможно, уже заметили, что неравенство нельзя умножать на выражение с иксом. Что ж, респект, как говорится.) А почему нельзя, как вы думаете? Очень просто. Мы же ничего не знаем про знак этого самого выражения с иксом! Оно может быть положительным, может быть отрицательным. Следовательно, мы понятия не имеем, какой знак неравенства ставить после умножения. Менять его или нет? Непонятно… Конечно, это ограничение (запрет на умножение/деление неравенства на выражение с иксом) можно и обойти. Если очень уж припрёт.) Но это — отдельная тема.

Зачем нужно второе преобразование? Да всё за тем же, зачем оно нужно и в уравнениях! Избавляться от коэффициентов. На которые, напоминаю, перенос влево-вправо не распространяется. Например, что-нибудь крутое типа:

С девяткой-то всё ясно. Переносим вправо по первому преобразованию, получаем:

Знак неравенства сохраняется!

Знак неравенства меняется на противоположный!

Ещё раз. В этом уроке мы с вами пока что не решаем неравенства. Мы всего лишь тренируемся правильно применять базовые преобразования! Просто на конкретных примерах гораздо нагляднее демонстрировать сам процесс.) Стало быть, если запись окончательного ответа x

Итак, с первым пунктом — тождественными преобразованиями — разобрались (надеюсь…). Но для успешного решения неравенств одних только тождественных преобразований, чаще всего, недостаточно. Именно этим неравенства и отличаются от уравнений. Поэтому пора переходить ко второму пункту. К работе с числовой осью.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *