Ребра что это геометрия

Ребро (геометрия)

Связанные понятия

Правильные четырёхмерные многогранники являются четырёхмерными аналогами правильных многогранников в трёхмерном пространстве и правильных многоугольников на плоскости.

Упоминания в литературе

Связанные понятия (продолжение)

Пра́вильный двадцатичетырёхъяче́йник, или просто двадцатичетырёхъяче́йник, или икоситетрахор (от др.-греч. εἴκοσι — «двадцать», τέτταρες — «четыре» и χώρος — «место, пространство»), — один из правильных многоячейников в четырёхмерном пространстве.

Пра́вильный шестнадцатияче́йник, или просто шестнадцатияче́йник — один из правильных многоячейников в четырёхмерном пространстве. Известен также под другими названиями: гексадекахор (от др.-греч. ἕξ — «шесть», δέκα — «десять» и χώρος — «место, пространство»), четырёхмерный гиперокта́эдр (поскольку является аналогом трёхмерного октаэдра), четырёхмерный кокуб (поскольку двойственен четырёхмерному гиперкубу), четырёхмерный ортоплекс.

В геометрии политоп (многогранник, многоугольник или замощение, например) изогонален или вершинно транзитивен, если, грубо говоря, все его вершины эквивалентны. Отсюда следует, что все вершины окружены одним и тем же видом граней в том же самом (или обратном) порядке и с теми же самыми углами между соответствующими гранями.

Если дано топологическое пространство и группа действий на нём, образы отдельной точки под действием группы действий образуют орбиты действий. Фундаментальная область — это подмножество пространства, которое содержит в точности по одной точке из каждой орбиты. Она даёт геометрическую реализацию абстрактного множества представителей орбит.

Многогранник размерности 3 и выше называется изоэдральным или гране транзитивным, если все его грани одинаковы. Точнее сказать, все грани должны быть не просто конгруэнтны, а должны быть транзитивны, то есть должны прилежать в одной и той же орбите симметрии. Другими словами, для любых граней A и B должна существовать симметрия всего тела (состоящая из вращений и отражений), которая отображает A в B. По этой причине выпуклые изоэдральные многогранники имеют формы правильных игральных костей.

В геометрии фигуру называют хиральной (и говорят, что она обладает хиральностью), если она не совпадает со своим зеркальным отображением, точнее, не может быть совмещена с ним только вращениями и параллельными переносами. Хиральная фигура и её зеркальный образ называют энантиоморфами. Слово хиральность происходит от др.-греч. χειρ (хеир) — «рука». Это самый известный хиральный объект. Слово энантиоморф происходит от др.-греч. εναντιος (энантиос) — «противоположный», и μορφη (морфе) — «форма». Нехиральный.

Полуправильные многогранники — в общем случае это различные выпуклые многогранники, которые, не являясь правильными, имеют некоторые их признаки, например: все грани равны, или все грани являются правильными многоугольниками, или имеются определённые пространственные симметрии. Определение может варьироваться и включать различные типы многогранников, но в первую очередь сюда относятся архимедовы тела.

Пра́вильный пятияче́йник, или просто пятияче́йник, или пентахор (от др.-греч. πέντε — «пять» и χώρος — «место, пространство»), — один из правильных многоячейников в четырёхмерном пространстве: правильный четырёхмерный симплекс.

Источник

Вершины, рёбра, грани многогранника

Онлайн-конференция

«Современная профориентация педагогов
и родителей, перспективы рынка труда
и особенности личности подростка»

Свидетельство и скидка на обучение каждому участнику

«Вершины, ребра, грани многогранника»

Многогранник (многогранная поверхность) – это поверхность, составленная из многоугольников, ограничивающая некоторое геометрическое тело. Примером многогранника является куб, параллелепипед, призма и т.д.

Грани многогранника – это многоугольники, из которых составлен многогранник. Например, гранями параллелепипеда являются параллелограммы.

Стороны граней называются ребрами, а концы ребер – вершинами многогранника.

Отрезок, соединяющий две вершины, не принадлежащие одной грани, называется диагональю многогранника.

Плоскость, по обе стороны от которой имеются точки многогранника, называется секущей плоскостью, а общая часть многогранника и секущей плоскости – сечением многогранника.

Многогранники бывают выпуклые и невыпуклые.

Многогранник называется выпуклым, если он расположен по одну сторону от плоскости каждой его грани. Все грани выпуклого многогранника являются выпуклыми многоугольниками.

Теорема Эйлера: в любом выпуклом многограннике сумма числа граней и числа вершин больше числа ребер на 2.

Леонардо Эйлер (1707 – 1783) – швейцарец по происхождению, выдающийся математик. Большую часть жизни работал в России.

Ребра что это геометрия. Смотреть фото Ребра что это геометрия. Смотреть картинку Ребра что это геометрия. Картинка про Ребра что это геометрия. Фото Ребра что это геометрия

Ребра что это геометрия. Смотреть фото Ребра что это геометрия. Смотреть картинку Ребра что это геометрия. Картинка про Ребра что это геометрия. Фото Ребра что это геометрия

Ребра что это геометрия. Смотреть фото Ребра что это геометрия. Смотреть картинку Ребра что это геометрия. Картинка про Ребра что это геометрия. Фото Ребра что это геометрия

Ребра что это геометрия. Смотреть фото Ребра что это геометрия. Смотреть картинку Ребра что это геометрия. Картинка про Ребра что это геометрия. Фото Ребра что это геометрия

Ребра что это геометрия. Смотреть фото Ребра что это геометрия. Смотреть картинку Ребра что это геометрия. Картинка про Ребра что это геометрия. Фото Ребра что это геометрия

Ребра что это геометрия. Смотреть фото Ребра что это геометрия. Смотреть картинку Ребра что это геометрия. Картинка про Ребра что это геометрия. Фото Ребра что это геометрия

Решить задачу: Начертите произвольный прямоугольный параллелепипед, укажите все его вершины, ребра и грани. Проверьте выполнимость формулы Эйлера.

Выпуклые многогранники: а, б, д

Невыпуклые многогранники: в, г

8 вершин, 12 ребер, 6 граней

Формула Эйлера: 6 + 8 – 12 = 2

Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.

Источник

Геометрия. 10 класс

Конспект урока

Геометрия, 10 класс

Урок № 13. Многогранники

Перечень вопросов, рассматриваемых в теме:

Многогранник – геометрическое тело, ограниченное конечным числом плоских многоугольников.

Грани многогранника – многоугольники, ограничивающие многогранники.

Ребра многогранника – стороны граней многогранника.

Вершины многогранника – концы ребер многогранника (вершины граней многогранника).

Диагональ многогранника – отрезок, соединяющий две вершины, не принадлежащие одной грани.

Выпуклый многогранник – многогранник, расположенный по одну сторону от плоскости его любой грани.

Невыпуклый многогранник – многогранник, у которого найдется по крайней мере одна грань такая, что плоскость, проведенная через эту грань, делит данный многогранник на две или более частей.

Атанасян Л. С., В. Ф. Бутузов, С. Б. Кадомцев и др. Математика: алгебра и начала математического анализа, геометрия. Геометрия. 10–11 классы: учеб. Для общеобразоват. организаций: базовый и углубл. уровния. – М.: Просвещение, 2014. – 255 с. (стр. 58, стр. 60 – 61)

Долбилин Н. П. Жемчужины теории многогранников М. : – МЦНМО, 2000. – 40 с.: ил. (стр. 27 – 31)

Открытые электронные ресурсы:

Долбилин Н. П. Три теоремы о выпуклых многогранниках. Журнал Квант.

Теоретический материал для самостоятельного изучения

К определению понятия многогранника существует два подхода. Проведем аналогию с понятием многоугольника. Напомним, что в планиметрии под многоугольником мы понимали замкнутую линию без самопересечений, составленную из отрезков (рис. 1а). Также многоугольник можно рассматривать как часть плоскости, ограниченную этой линией, включая ее саму (рис. 1б). При изучении тел в пространстве мы будем пользоваться вторым толкованием понятия многоугольник. Так, любой многоугольник в пространстве есть плоская поверхность.

Б)Ребра что это геометрия. Смотреть фото Ребра что это геометрия. Смотреть картинку Ребра что это геометрия. Картинка про Ребра что это геометрия. Фото Ребра что это геометрия

Ребра что это геометрия. Смотреть фото Ребра что это геометрия. Смотреть картинку Ребра что это геометрия. Картинка про Ребра что это геометрия. Фото Ребра что это геометрия

Рисунок 1 – разные подходы к определению многоугольника

Вторая трактовка понятия определяет многогранник как геометрическое тело, ограниченное конечным числом плоских многоугольников.

В дальнейшем, мы будем использовать вторую трактовку понятия многогранника.

Уже известные вам тетраэдр и параллелепипед являются многогранниками. Потому что они являются геометрическими телами, ограниченные конечным числом плоских многоугольников. Еще один пример многогранника — октаэдр (рис. 2)

Ребра что это геометрия. Смотреть фото Ребра что это геометрия. Смотреть картинку Ребра что это геометрия. Картинка про Ребра что это геометрия. Фото Ребра что это геометрия

Рисунок 2 – изображение октаэдра

Многоугольники, ограничивающие многогранник, называются его гранями. Так, у тетраэдра и октаэдра гранями являются треугольники. У тетраэдра 4 грани, отсюда и его название от греч. τετρά-εδρον — четырёхгранник. У октаэдра 8 граней, а от греческого οκτάεδρον от οκτώ «восемь» + έδρα «основание».

Стороны граней называются ребрами, а концы ребер — вершинами многогранника. Отрезок, соединяющий две вершины, не принадлежащие одной грани, называется диагональю многогранника.

Многогранник называется выпуклым, если он расположен по одну сторону от плоскости каждой его грани. В остальных случаях многогранник называется невыпуклым (рис.3).

Ребра что это геометрия. Смотреть фото Ребра что это геометрия. Смотреть картинку Ребра что это геометрия. Картинка про Ребра что это геометрия. Фото Ребра что это геометрия

Рисунок 3 – Виды многогранников

Сумма плоских углов при вершине выпуклого многогранника

Ребра что это геометрия. Смотреть фото Ребра что это геометрия. Смотреть картинку Ребра что это геометрия. Картинка про Ребра что это геометрия. Фото Ребра что это геометрия

Рисунок 4 – сумма плоских углов пи вершине многогранника

Теорема Эйлера. Пусть В — число вершин выпуклого многогранника, Р — число его ребер, а Г — число его граней. Тогда верно равенство В – Р+Г= 2.

Теорема Эйлера играет огромную роль в математике. С ее помощью было доказано огромное количество теорем. Находясь в центре постоянного внимания со стороны математиков, теорема Эйлера получила далеко идущие обобщения. Более того, эта теорема открыла новую главу в математике, которая называется топологией.

Примеры и разбор решения заданий тренировочного модуля

Задание 1. Какие из перечисленных объектов НЕ могут быть элементами многогранника? Укажите номера в порядке возрастания.

Элементы многогранника, которые мы выделили: ребра, грани, вершины и диагонали. Ребро и диагональ многогранника – это отрезок. Грань многогранника – многоугольник, или иначе ограниченная часть плоскости. Вершины представляют собой точки. Таким образом, элементами многогранника не могут быть плоскость, луч, многогранник, прямая.

Задание 2. Сопоставьте геометрическим фигурам их вид

Ребра что это геометрия. Смотреть фото Ребра что это геометрия. Смотреть картинку Ребра что это геометрия. Картинка про Ребра что это геометрия. Фото Ребра что это геометрияРебра что это геометрия. Смотреть фото Ребра что это геометрия. Смотреть картинку Ребра что это геометрия. Картинка про Ребра что это геометрия. Фото Ребра что это геометрияРебра что это геометрия. Смотреть фото Ребра что это геометрия. Смотреть картинку Ребра что это геометрия. Картинка про Ребра что это геометрия. Фото Ребра что это геометрия

Б) пространственная фигура

Вспомним, что изобразить пространственную фигуру можно разными способами. Например, с помощью теней или изображением невидимых линий пунктиром. Так, среди всех изображений плоской фигурой является фигура под номером 1.

Многогранник – геометрическое тело, ограниченное конечным числом плоских многоугольников. Только на изображении 2 фигура ограничена многоугольниками. Таким образом, получаем следующий ответ: 1-А, 2-В, 3-Б

Источник

Геометрия. 10 класс

Конспект урока

Геометрия, 10 класс

Перечень вопросов, рассматриваемых в теме:

Призма – многогранник, составленный из равных многоугольников, расположенных в параллельных плоскостях, и n параллелограммов.

Боковые грани – все грани, кроме оснований.

Боковые ребра – общие стороны боковых граней.

Основания призмы – равные многоугольники, расположенные в параллельных плоскостях.

Прямая призма – призма, боковые ребра которой перпендикулярны основаниям.

Правильная призма – прямая призма, в основании которой лежит правильный многоугольник.

Площадь полной поверхности призмы – сумма площадей всех ее граней.

Площадь боковой поверхности призмы – сумма площадей ее боковых граней.

Параллелепипед – призма, все грани которой – параллелограммы.

Прямоугольный параллелепипед – параллелепипед в основании которого лежит прямоугольник.

Атанасян Л. С., Бутузов В. Ф., Кадомцев С. Б. и др. Математика: алгебра и начала математического анализа,

геометрия. Геометрия. 10–11 классы : учеб. Для общеобразоват. организаций : базовый и углубл. Уровни – М. : Просвещение, 2014. – 255 с.

Открытые электронные ресурсы:

Открытый банк заданий ФИПИ http://ege.fipi.ru/

Теоретический материал для самостоятельного изучения

Определение призмы. Элементы призмы.

Рассмотрим два равных многоугольника А1А2. Аn и В1В2. Вn, расположенных в параллельных плоскостях α и β соответственно так, что отрезки А1В1, А2В2. АnВn, соединяющие соответственные вершины многоугольников, параллельны (рис. 1).

Ребра что это геометрия. Смотреть фото Ребра что это геометрия. Смотреть картинку Ребра что это геометрия. Картинка про Ребра что это геометрия. Фото Ребра что это геометрия

Дадим определение призмы. Призма – многогранник, составленный из равных многоугольников, расположенных в параллельных плоскостях, и n параллелограммов.

При этом равные многоугольники, расположенные в параллельных плоскостях, называются основаниями призмы, а параллелограммы – боковыми гранями призмы. Общие стороны боковых граней будем называть боковыми ребрами призмы.

Отметим, что все боковые ребра призмы равны и параллельны (как противоположные стороны параллелограммов).

Перпендикуляр, проведенный из какой-нибудь точки одного основания к плоскости другого основания, называется высотой призмы. Обратите внимание, что все высоты призмы равны между собой, так как основания расположены на параллельных плоскостях. Также высота призмы может лежать вне призмы (рис. 2).

Ребра что это геометрия. Смотреть фото Ребра что это геометрия. Смотреть картинку Ребра что это геометрия. Картинка про Ребра что это геометрия. Фото Ребра что это геометрия

Рисунок 2 – Наклонная призма

Если боковые ребра призмы перпендикулярны основаниям, то призма называется прямой. В противном случае, призма называется наклонной.

Высота прямой призмы равна ее боковому ребру.

На рисунке 3 приведены примеры прямых призм

Ребра что это геометрия. Смотреть фото Ребра что это геометрия. Смотреть картинку Ребра что это геометрия. Картинка про Ребра что это геометрия. Фото Ребра что это геометрияРебра что это геометрия. Смотреть фото Ребра что это геометрия. Смотреть картинку Ребра что это геометрия. Картинка про Ребра что это геометрия. Фото Ребра что это геометрияРебра что это геометрия. Смотреть фото Ребра что это геометрия. Смотреть картинку Ребра что это геометрия. Картинка про Ребра что это геометрия. Фото Ребра что это геометрия

Рисунок 3 – Виды призм.

Прямая призма называется правильной, если ее основание – правильный многоугольник. В правильной призме все боковые грани – равные прямоугольники.

Иногда четырехугольную призму, грани которой параллелограммы называют параллелепипедом. Известный вам правильный параллелепипед – это куб.

Площадь полной поверхности призмы. Площадь боковой поверхности призмы.

Площадью полной поверхности призмы (Sполн) называется сумма площадей всех ее граней, а площадью боковой поверхности (Sбок) призмы – сумма площадей ее боковых граней.

Таким образом, верно следующее равенство: Sполн= Sбок+2Sосн, то есть площадь полной поверхности есть сумма площади боковой поверхности и удвоенной площади основания.

Чему равна площадь боковой поверхности прямой призмы?

Теорема. Площадь боковой поверхности прямой призмы равна произведению периметра основания на высоту призмы.

Боковые грани прямой призмы – прямоугольники, основания которых – стороны основания призмы, а высоты равны высоте призмы – h. Площадь боковой поверхности призмы равна сумме площадей боковых граней, то есть прямоугольников. Площадь каждого прямоугольника есть произведение высоты h и стороны основания. Просуммируем эти площади и вынесем множитель h за скобки. В скобках получим сумму всех сторон основания, то есть периметр основания P. Таким образом Sбок=Pоснh.

Пространственная теорема Пифагора

Прямой параллелепипед, основание которого – прямоугольник называется прямоугольным.

Теорема. Квадрат длины диагонали прямоугольного параллелепипеда равен сумме квадратов длин трех его ребер, исходящих из одной вершины.

Ребра что это геометрия. Смотреть фото Ребра что это геометрия. Смотреть картинку Ребра что это геометрия. Картинка про Ребра что это геометрия. Фото Ребра что это геометрия

Рисунок 4 – Прямоугольный параллелепипед

Рассмотрим прямоугольный параллелепипед ABCDA1B1C1D1 и найдем квадрат длины его диагонали А1С.

Для этого рассмотрим треугольник А1АС:

Ребро АА1 перпендикулярно плоскости основания (ABC) (т.к. параллелепипед прямой), значит АА1 перпендикулярна любой прямой, лежащей в плоскости основания, в том числе АС. Таким образом, ΔА1АС – прямоугольный.

По теореме Пифагора получаем: А1С 2 =АА1 2 +АС 2 (1).

Так как в основании прямоугольник, то ВС=АD.

Что и требовалось доказать

Доказанная теорема является аналогом теоремы Пифагора (для прямоугольного треугольника), поэтому ее иногда называют пространственной теоремой Пифагора.

Примеры и разбор решения заданий тренировочного модуля

Найдите для каждой картинки пару

1)Ребра что это геометрия. Смотреть фото Ребра что это геометрия. Смотреть картинку Ребра что это геометрия. Картинка про Ребра что это геометрия. Фото Ребра что это геометрия2) Ребра что это геометрия. Смотреть фото Ребра что это геометрия. Смотреть картинку Ребра что это геометрия. Картинка про Ребра что это геометрия. Фото Ребра что это геометрия3) Ребра что это геометрия. Смотреть фото Ребра что это геометрия. Смотреть картинку Ребра что это геометрия. Картинка про Ребра что это геометрия. Фото Ребра что это геометрия

4)Ребра что это геометрия. Смотреть фото Ребра что это геометрия. Смотреть картинку Ребра что это геометрия. Картинка про Ребра что это геометрия. Фото Ребра что это геометрия5) Ребра что это геометрия. Смотреть фото Ребра что это геометрия. Смотреть картинку Ребра что это геометрия. Картинка про Ребра что это геометрия. Фото Ребра что это геометрия

6) Ребра что это геометрия. Смотреть фото Ребра что это геометрия. Смотреть картинку Ребра что это геометрия. Картинка про Ребра что это геометрия. Фото Ребра что это геометрия

Все изображения можно разделить на две группы: призмы и многоугольники. Вспомним, что основанием призмы является многоугольник. Теперь необходимо посчитать количество вершин многоугольников в основаниях призм и сопоставить их с нужным изображением. Таким образом, получаем следующий ответ: 1 и 3, 2 и 4, 5 и 6.

Какие из перечисленных объектов могут быть элементами призмы?

1) параллельные плоскости

Вспомним сначала, какие элементы есть у призмы. Это ребра, грани, вершины, основания, высота, диагональ.

Ребра, высота и диагональ призмы представляют собой отрезок. Грани и основания – это многоугольники, то есть части плоскостей. Вершины – точки. Таким образом, подходят варианты 2, 3,4.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *