Релейная связь что это
Радиорелейные станции и системы связи
Радиорелейные системы связи являются одними из наиболее распространенных видов передачи информации посредством электромагнитных колебаний. На основе этой технологии работает эфирное радио и телевизионное вещание, средства специальной связи, а также сотовая и спутниковая телефония.
Без радиосвязи невозможно представить современную жизнь, ведь беспроводной способ трансляции информации используется практически во всех сферах науки, промышленности и быта.
Принцип работы и необходимое оборудование для радиорелейных станций и систем связи
Средства радиорелейной связи – это целый комплекс оборудования и технических строений, которые обеспечивают двухстороннюю передачу сигнала, используя в качестве основы радиоволну определенного диапазона. Чтобы объяснить механику процесса, мы не будем углубляться в постулаты волновой теории, понятий электромагнитного поля и частотных колебаний.
Если объяснять простым языком, то сам процесс передачи информации выглядит следующим образом:
Это упрощенная модель трансляции радиосигнала, которая показывает принцип работы всей системы. Современные радиорелейные станции связи могут транслировать сигнал на большие расстояния, а при поддержке орбитальных ретрансляторов (спутников) зона покрытия распространяется практически на всю поверхность нашей планеты. Это позволяет обмениваться информацией и транслировать сигналы не только в развитых и обжитых городах, но и на водной поверхности морей и океанов, да и в любом месте суши, невзирая на наличие подходящей инфраструктуры.
Для полноценного функционирования всей системы необходимо специальное оборудование:
Принципиальные различия аналогового и цифрового сигнала
Еще четверть века назад подавляющее количество сигналов, которые транслировались через системы связи, были аналоговыми. Главная проблема такого сигнала – слабая помехоустойчивость и обязательные искажения после декодирования. Это и всевозможные посторонние шумы в радиоприемнике, а также недостаточно четкая картинка в телевизоре.
С развитием технологий, цифровая радиорелейная связь стала постепенно вытеснять традиционный аналоговый сигнал благодаря своим ключевым преимуществам:
Учитывая указанные преимущества, цифровые радиорелейные линии связи являются перспективной разработкой, которая постепенно вытеснит аналоговый сигнал из эфира.
Особенности реализации радиорелейной связи
Радиорелейные каналы уже давно привлекают специалистов и разработчиков за счет своих характеристик и параметров.
Радиорелейная связь имеет большие перспективы для замены обычных систем, которые прочно вошли в повседневную жизнь и стали традиционными.
Но при этом не стоит исключать из внимания особенности реализации радиорелейной связи. Такая процедура достаточно длительная и трудоемкая. Именно поэтому ее реализация за один подход невозможна.
Подобный тип связи представляет собой один из видов передачи данных. Он основан на постоянно повторяющей ретрансляции сигналов. Как правило, такой вид применяется между неподвижными элементами.
Ранее подобная связь осуществлялась с условием применения целой цепочки специальных пунктов. Они могли быть двух типов: активными и пассивными.
Такой вид связи имеет разительное отличие от наземного. Оно заключается в эксплуатации антенн узконаправленного типа.
Также предполагается использование волн различного диапазона:
Стоит отметить, что радиорелейная связь бывает двух видов. Первый – прямой видимости, а второй – тропосферная. Они также отличаются между собой принципом функционирования.
Если в первом случае антенны соседних станций располагаются в зонах прямой видимости, то во втором применяется эффект отражения электромагнитных волн дециметрового и сантиметрового диапазона от турбулентных неоднородных пластов, находящихся в нижних слоях атмосферы. Именно отсюда и пошло непосредственно название каждого из видов.
Развитие и реализация сегмента радиорелейной связи
Радиорелейная связь предполагает использование специальных ретрансляторов. Они нужны для обеспечения качественного преобразования сигнала.
Их отличие от станций такого же типа в том, что первые не добавляют никакой лишней информации. Они могут быть как активного, так и пассивного вида.
Первые способствуют увеличению дальности связи. Вторые, напротив, не могут сделать полезный сигнал более мощным или же перенести его на другой частотный уровень. Они представляют собой простой отражатель, который не имеет специальной приемопередающей аппаратуры.
На современном рынке с каждым днем появляются новые устройства, заслуживающие внимания.
Так, внедрение инноваций способствует улучшению качества всех коммуникаций и непосредственного самого сигнала при передаче информации на дальние расстояния.
Среди новинок следует отметить смарт-ретрансляторы. Их появление обусловлено стремительным развитием технологии МIМО. Ее использование предполагает необходимость знания всех характеристик и параметров радиорелейных каналов. Эти приборы функционируют по принципу «интеллектуальной» обработки сигналов.
Примеры радиорелейных станций и систем связи на выставке
Особенности реализации радиорелейной связи обязательно следует учитывать. Хоть такой подход и является более сложным, но он позволяет максимально учесть все помехи, которые вносятся в полезные сигналы по всей площади их распространения.
Для представителей отрасли имеется уникальная возможность посетить тематические мероприятия в интернациональном комплексе ЦВК «Экспоцентр», в частности выставка «Связь».
На выставке обязательно будут примеры радиорелейных станций и систем связи.
Тематические проекты, такие как выставка «Связь», содействуют развитию бизнеса и эффективному внедрению инновационных технологий.
Радиорелейные линии связи — особенности, применение
Отечественной радиорелейной промышленности более 50 лет. За время своего развития отрасль вышла на ожидаемые позиции. Сегодня радиорелейные каналы (РРЛ) отлично зарекомендовали себя в обеспечении удаленных районов с низкой инфраструктурой, охвате больших пространств и местностей со сложной структурой геологии. К числу заметных отличий от проводной технологии добавился более низкий бюджет оснащения.
Применение радиорелейных линий связи
Радиорелейные линии связи находят широкое применение в различных отраслях промышленности. В общем случае беспроводные каналы заменяют проводные сети многоканальной телефонной связи. Лидером по протяженности радиорелейных линий связи остается Киргизия. Использование РРЛ обусловлено преобладанием горного рельефа на всей территории Республики. Вторым направлением оснащения современными линиями передачи остается телевидение. Учитывая, что средний радиус распространения вещания составляет 100 километров, федеральные каналы все чаще осваивают строительство так называемых беспрограммных телецентров.
Беспроводная связь РРЛ активно используется провайдерами интернета, сотовыми операторами. Известно применение радиорелейных каналов для организации корпоративной связи. Ввиду большего чем у WI — FI бюджета и необходимости получения лицензии, РЛЛ остается недоступным для малого и среднего бизнеса, частных лиц. Срок службы оборудования достигает 30 лет с учетом того, что комплексы могут работать даже в суровых условиях климата.
Традиционные РРЛ магистрального типа постепенно переходит в сегмент городских линий, уступая место оптоволоконным линиям. Однако такие шаги требуют согласования бюджета проекта. Безусловным остается применение РРЛ в северных, малозаселенных районах, где нет необходимости в прогнозировании трафика.
В практике применения РРЛ-сетей используется несколько вариантов развертывания. Самый популярный сценарий размещения станций – пошаговое размещение вышек на маршруте оснащения. Применение технологии hop-by-hop обеспечивает возможность оперативного внесения изменений в действующие конфигурации или модернизацию устаревшего оборудования.
Принцип построения, используемое оборудование, применение
Основными компонентами, обеспечивающими передачу сигналов на большие расстояния, являются радиорелейные линии прямой видимости. В их задачи входит обеспечение устойчивой связи при передаче до потребителя сообщений в цифровом формате, вещания телевидения и звуковых эфиров. В состав волнового спектра входят диапазоны сантиметровых и дециметровых волн.
В используемых диапазонах прямой видимости не наблюдаются помехи атмосферного и техногенного происхождений. Расстояние между ближайшими станциями, работающих в ширине спектра 30 ГГц является расчетным, зависит от высоты вышек и рельефа в местности размещения.
Радиорелейная связь нашла широкое применение в областях народного хозяйства. Принцип ретрансляции активно используется для организации и построения локальных сетей крупных корпораций. Надежность и достоверность передаваемых сигналов применяется для управления войсками и организации коммерческой связи.
Преимущества технологии РРЛ успешно внедряются в инфраструктуру производств, имеющих большое количество удаленных объектов. Это аэропорты, железнодорожные и морские министерства сообщений. Единственным недостатком, который остается ощутимым при возведении систем передачи данных остается необходимость обеспечения прямой видимости между ретрансляторами. Это требование ставит целый ряд условий перед службами технического оснащения, повышает бюджет проекта за счет необходимости увеличения числа промежуточных станций.
Радиорелейная связь: история, принцип, достоинства и недостатки
Радиорелейная связь в ХХ веке позволила передавать большое количество информации на очень далекие расстояния. Прием/передача ведется в УКВ диапазоне: дециметровые, сантиметровые и метровые волны. Короткие волны способны самостоятельно, без промежуточных звеньев достигать приемника. Но из-за их особенностей в КВ невозможно заложить большой объем данных.
История радиорелейной связи
Впервые идея радиорелейной связи была предложена в 1898 году в журнале «Заметки электроника». Статью написал Иоганн Маттауш. Несмотря на большой объем критики, спустя год ЭмильГуарини-Форестио сконструировал работоспособный экземпляр. Он запатентовал 27 мая 1899 года радио-репитер — это дата появления на свет радиорелейной связи.
Долгие годы инженеры пытались добиться от нового способа передачи данных возможности для практического применения. Устанавливались массивные антенны, добавлялись фильтры, но из-за несовершенства конструкции идея имела только теоретический смысл.
Реальное применение радиорелейной связи стало возможным только спустя 30 лет, когда были изобретены высокочастотные радиолампы. В 30-х годах ХХ века благодаря радиорелейной связи страны начали отказываться от прокладки телеграфных кабелей в сложных условиях, и начали устанавливать мощные промежуточные приемники/передатчики.
Радиорелейные линии применялись во Второй мировой войне. Сегодня мобильные сети наземного базирования используют принципы радиорелейной связи. Также РРЛ применяется в военных целях для управления войсками.Ученные задумываются о возможности передачи энергии. Такая идея была у Николы Теслы, но реализовать ее он не смог.
Как работает радиорелейная связь
Принцип действия радиорелейной связи прост. Между приемником и передатчиком используется промежуточное звено — радиорелейный комплекс. А от него передается на приемник. Благодаря такому подходу стало возможно передавать УКВ диапазон на значительные расстояния. Необходимость именно в радиорелейной связи остро стала, когда оборудование способное передавать КВ диапазон перестало удовлетворять максимальным объемом.
Прием и передача сигнала при РРЛ ведется в ДМВ диапазоне:
Иногда используются сантиметровые волны, но метровый диапазон нужен только в особых случаях. Частоты более 10 ГГц в радиорелейной связи смысла не имеют, из-за большой уязвимости в условиях осадков.
Достоинства РРЛ
Плюсов в радиорелейной связи довольно много. Именно благодаря своим достоинствам эта технология полностью не забыта ученными:
Это лишь основные достоинства радиорелейной связи. К этому списку можно добавить экономию цветных металлов — меди и алюминия, которые применяются для проводной передачи ВЧ сигналов.
Недостатки радиорелейной связи
Минусов у РРЛ не так много, но о них тоже стоит упомянуть:
Радиорелейную связь можно без преувеличения назвать одним из важнейших изобретений ХХ века. Именно благодаря РРЛ сетям впервые стало возможно передавать большие массивы данных на дальние расстояния без использования проводов.
Радиорелейная связь
Радиореле́йная свя́зь (от англ. Relay — передавать, транслировать) — один из видов радиосвязи, образованной цепочкой приёмо-передающих (ретрансляционных) радиостанций. Наземная радиорелейная связь осуществляется обычно на деци- и сантиметровых волнах (от сотен мегагерц до десятков гигагерц).
По назначению радиорелейные системы связи делятся на три категории, каждой из которых на территории России выделены свои диапазоны частот:
Данное деление связано с влиянием среды распространения на обеспечение надёжности радиорелейной связи. До частоты 12ГГц атмосферные явления оказывают слабое влияние на качество радиосвязи, на частотах выше 15ГГц это влияние становится заметным, а выше 40ГГц определяющим, кроме того, на частотах выше 40ГГц значительное влияние на качество связи оказывает затухание в атмосфере Земли.
Атмосферные потери, в основном, складываются из потерь в атомах кислорода и в молекулах воды. Практически полная непрозрачность атмосферы для радиоволн наблюдается на частоте 118.74 ГГц (резонансное поглощение в атомах кислорода), а на частотах больше 60 ГГц погонное затухание превышает 15 дБ/км. Ослабление в водяных парах атмосферы зависит от их концентрации и весьма велико во влажном теплом климате и доминирует на частотах ниже 45 ГГц.
Также отрицательно на радиосвязь влияют гидрометеоры, к которым относятся капли дождя, снег, град, туман и пр. Влияние гидрометеоров заметно уже при частотах больше 6 ГГц, а в неблагоприятных экологических условиях (при наличии в атмосферных осадках металлизированной пыли, смога, кислот или щелочей) и на значительно более низких частотах.
Антенны соседних станций располагают в пределах прямой видимости (за исключением тропосферных станций). Для увеличения длины интервала между станциями антенны устанавливают как можно выше — на мачтах (башнях) высотой 10—100 м (радиус видимости — 40-50 км) и на высоких зданиях. Станции могут быть как стационарными, так и подвижными (на автомобилях).
Принципиальным отличием радиорелейной станции от иных радиостанций является дуплексный режим работы, то есть приём и передача происходят одновременно (на разных несущих частотах).
Протяженность наземной линии радиорелейной связи — до 10000 км, ёмкость — до нескольких тысяч каналов тональной частоты в аналоговых линиях связи, и до 622 мегабит в цифровых линиях связи. В общем случае, протяжённость и ёмкость (скорость передачи данных) находятся в обратно пропорциональной зависимости друг от друга: как правило, чем больше расстояние, тем ниже скорость, и наоборот.
В Российской Федерации для вновь вводимых магистральных радиорелейных линий связи определены скорости передачи, равные 155 Мбит/с (поток STM-1 синхронной цифровой иерархии, SDH) или 140 Мбит/с (поток Е4 плезиохронной цифровой иерархии, PDH, передаваемый в составе сигнала STM-1).
Содержание
История
В СССР начало развитию радиорелейной промышленности было положено в середине 50-х годов. Причиной для этого стала дешевизна радиорелейной связи по сравнению с кабельными линиями, особенно в условиях огромных пространств с неразвитой инфраструктурой и сложной геологической структурой местности. Первая магистральная радиорелейная система Р-600 (Р-600М, Р-600-МВ, «Рассвет-2») была создана в 1958 году. В 1970 году появился комплекс унифицированных радиорелейных систем «КУРС». Все это позволило в 60—70-е годы развить сеть связи страны, обеспечить качественную телефонию и наладить передачу программ центрального телевидения. К середине 70-х годов в стране была построена уникальная радиорелейная линия, протяжённость которой составляла около 10 тыс. км, емкостью каждого ствола равной 14400 каналов тональной частоты. Суммарная протяженность РРЛ в СССР превысила к середине 70-х годов 100 тыс. км.
Среди созданных радиорелейных линий связи можно назвать тропосферную радиорелейную линию связи «Север» (ТРРЛ «Север»).
C начала 90-х годов в России для построения сетей передачи данных начинают активно применятся цифровые радиорелейные станции плезиохронной цифровой иерархии и, позднее, синхронной цифровой иерархии в основном зарубежного производства.
Наиболее протяженные местные и внутризоновые сети передачи данных, основанные на РРЛ в настоящее время имеют операторы сотовой связи, такие как Билайн, МегаФон и МТС. Наиболее протяженные магистральные сети передачи данных, основанные на РРЛ принадлежат Ростелекому.
Принципы построения аппаратуры РРЛ
В устаревших на данный момент аналоговых РРЛ, а также магистральных цифровых РРЛ как блоки со стандартными интерфейсами, так и радиомодули обычно устанавливаются в линейно-аппаратном зале. Это связано с реализацией сложных схем резервирования N + 1, когда нет возможности расположить делитель мощности с одной антенны на несколько радиомодулей в непосредственной близости от антенны из-за громоздкости делителя мощности. В этом случае радиомодули и антенну соединяет волновод, проложенный от линейно-аппаратного зала до места крепления антенны на радиорелейной башне.
Так же распространен вид цифровых РРЛ, в котором конструктивно совмещается модуль стандартных интерфейсов и радиомодуль в виде одного герметичного блока, имеющего несколько стандартных интерфейсов, разъем питания и волноводный разъем для непосредственного крепления к антенне.
Конфигурации и методы резервирования
Уменьшение коэффициента неготовности достигается с помощью дублирования функциональных блоков РРЛ или использованием отдельного резервного ствола РРЛ.
Конфигурация оборудования РРЛ с одним стволом без резервирования.
Конфигурация оборудования РРЛ с N стволами без резервирования. Конфигурация N+0 представляет собой несколько частотных стволов РРЛ или стволов с разной поляризацией, работающих через одну антенну. В случае использования нескольких частоных стволов разделение стволов осуществляется с помощью делителя мощности и частотых полосовых фильтров. В случае использования стволов РРЛ с разной поляризацией разделение стволов осуществляется применением специальных антенн, поддерживающими прием и передачу сигналов с разными поляризациями (например, кроссполяризационных антенн, имеющих одинаковый коэффициент усиления для сигнала с горизонтальной и вертикальной поляризацией).
Конфигурация N+1 HSB (Hot StandBy)
Конфигурация оборудования РРЛ с N стволами и одним резервным стволом, находящимся в «горячем» резерве. Фактически резервирование достигиется путем дублирования всех или части функциональных блоков РРЛ. В случае выхода одного из блоков РРЛ из строя, блоки, находящиеся в «горячем» резерве замещаю неработоспособные блоки.
Конфигурация N+M HSB (Hot StandBy)
Конфигурация оборудования РРЛ с N стволами и M резервным стволом, находящимися в «горячем» резерве.
Конфигурация N+1 SD (Space Diversity)
Конфигурация N+M SD (Space Diversity)
Конфигурация N+1 FD (Frequency Diversity)
Конфигурация N+M FD (Frequency Diversity)
Кольцевая топологоя построения РРЛ
Построенные интервалов РРЛ по кольцевой топологии является одним из самых надежных способов резервирования, даже если все интервалы РРЛ в кольце работают в конфигурации 1+0. Тем не менне существуют несколько правил пострения кольцевой топологии интервалов РРЛ: количество пролетов в кольце должно быть не менее четырех, а также угол между соседними интервалами РРЛ должен быть больше 90° (с целью уменьшения влияния гидрометеоров на соседние интервалы РРЛ).
Как правило в реальных сетях, состоящей из интеравлов РРЛ, комбинируют различные методы резервирования с целью увеличения надежности сети.
Технологии, используемые в РРЛ
Цифровые РРЛ используются не только для организации PDH и SDH линий связи, а также для организации Ethernet линий со скоростью передачи до 2,5 Гбит/с связи без использования таких технилогий, как EoPDH, PoSDH. Передача Ethernet кадров без необходимости инкапсуляции их TDM кадры (потоки E1 или E3, фреймы SDH и т.п) возможна благодаря использованию пакетного радиокадра вместо TDM радиокадра в радиоканале. Согласно технологиям, используемым для организации радиокадров различают следующие виды цифровых РРЛ:
К пакетным относят цифровые РРЛ с пакетным радиокадром. Для передачи TDM потоков используются псевдопроводные технологии передачи данных. За счет использования пакетного радиокадра возможно применение механизмов QoS над потоками данных, передаваемых через пакетные РРЛ. Так же, в пакетных РРЛ наиболее часто используется адаптивная модуляци, обычно сочетаемая с QoS.
Энергетические и качественные показатели
Основным документов для расчёта энергетических и качественных показателей РРЛ прямой видимости на территории России является ГОСТ-Р 53363-2009 «Цифровые радиорелейные линии. Показатели качества. Методы расчета».
ГОСТ-Р 53363-2009 основан на рекомендациях Сектора радиосвязи Международного союза электросвязи.
Перспективы развития
Релейная связь что это
Применение радиорелейной связи
Радиорелейные станции (РРС) обычно используются:
РРС сравнительно редко применяются в сегменте SOHO и частными лицами, так как их использование чаще всего требует лицензирования и стоят они гораздо дороже оборудования WI-FI, даже провайдерского класса.
Помимо производительности высокая цена оправдывает себя длительным сроком службы оборудования: большинство моделей ведущих вендоров радиорелейных станций рассчитано на несколько десятков лет службы (20-30 лет), в том числе в суровых климатических условиях.
Основные отличия РРЛ от беспроводной связи по Wi-Fi:
Кроме того, в радиорелейной связи, в отличие от обычного WiFi, активно применяется:
Преимущества и недостатки радиорелейного канала связи по сравнению с волоконнооптическими линиями:
Преимущества:
Несмотря на узкую нишу, существует довольно много различных типов радиорелейных станций. Ниже мы рассмотрим их основную классификацию и общие характеристики, а также серию радиорелеек Ubiquiti, оптимальных по соотношению цена/производительность для сегмента рынка.
Частота работы радиорелейных станций
Так как разбег частот большой, особенности развертывания линков на них и характеристики связи серьезно отличаются. Можно выделить основные закономерности:
Чем выше частота, тем большее влияние на сигнал оказывают атмосферные осадки. В диапазоне 2-8 ГГц их влияние на мощный радиорелейный канал практически незаметно, а в диапазонах выше 40 ГГц дождь становится серьезной помехой. Смотрим график зависимости:
Условия развертывания РРЛ и дальность связи
Также для дальности связи, как мы уже сказали выше, имеет значение диапазон, в котором работает радиорелейное оборудование:
Технологии PDH и SDH
Все используемые сейчас РРЛ разделяются на два основных типа:
с использованием технологии передачи PDH (плезиохронной цифровой иерархии), с использованием технологии передачи SDH (синхронной цифровой иерархии).
Передача данных по радиорелейной связи с использованием технологии PDH на практике происходит по 4 видам потоков: