Реологические свойства это что

Реологические свойства

Реология — это учение о текучести материалов. Текучесть жидкости измеряется вязкостью, текучесть твердых веществ — ползучестью (крипом) и вязкоэластичностью.

Вязкость

Когда вещество течет под воздействием прилагаемой к нему нагрузки (например, сил гравитации), молекулы или атомы начинают контактировать с соседними атомами или молекулами. Таким образом, имеющиеся связи могут распадаться и образовываться снова, оказывая сопротивление течению. Это сопротивление течению и называется вязкостью.

Для таких жидкостей, как вода, силы связи между молекулами очень малы и легко преодолеваются, поэтому вода легко течет под воздействием сил, прилагаемых извне, и вязкость ее невысока. У некоторых других жидкостей силы межмолекулярного взаимодействия будут намного выше. Обычно такие силы ассоциируются с крупными молекулами, например, молекулами такого известного вещества, как патока. Молекулы в подобных веществах могут переплетаться друг с другом, что делает жидкость очень вязкой.

Рис. 1.8.1. Сдвиг слоя жидкости толщиной d, расположенного между двумя твердыми пластинами. Для движения верхней подвижной пластины относительно неподвижной нижней со скоростью V необходимо приложить силу F для преодоления сопротивления данного слоя жидкости

Эти явления наблюдаются у полимеров с высокой молекулярной массой.

Когда мы перемешиваем жидкость, мы прикладываем усилия, которые создают в жидкости напряжения сдвига, чем энергичнее перемешивается жидкость, тем выше скорость сдвига. Эта ситуация графически показана на Рис. 1.8.1. Напряжение и скорость сдвига определяются соотношениями:

Напряжение сдвига = r\s = F/A

Скорость сдвига = е = V/d

Существует ряд методов измерения напряжения сдвига путем оценки ряда скоростей сдвига для данной жидкости. По значениям скоростей сдвига, полученным экспериментальным путем, строят график в координатах напряжение сдвига — скорость сдвига. Зависимость между напряжением и скоростью сдвига для многих жидкостей является линейной. На Рис. 1.8.2 представлена типичная кривая для такой жидкости. Угол наклона кривой равен вязкости, т), определяемой по формуле: Т| = напряжение сдвига/скорость сдвига. Единицами измерения вязкости являются Паскаль секунды (Пах).

Вещества, для которых соотношение между напряжением и скоростью при сдвиге носит линейный характер, имеют один показатель вязкости для всего диапазона скоростей сдвига, и проявляют «ньютоновские » свойства текучести. Однако линейное соотношение наблюдается далеко не у всех материалов, некоторые имеют другие отличные характеристики, представленные на Рис. 1.8.3.

Рис. 1.8.2. Зависимость напряжения сдвига от скорости для ньютоновской жидкости

Рис. 1.8.3. Графическое представление реологических свойств ряда жидкостей

Жидкости с пластической характеристикой не будут течь, пока приложенное начальное напряжение сдвига не достигнет определенной величины. После этого течение жидкости будет соответствовать ньютоновскому поведению.

У дилатантных (расширяющихся) жидкостей при повышении скорости сдвига будет увеличиваться вязкость. Это означает, что чем быстрее мы будем перемешивать жидкость, тем труднее будет проводить этот процесс. Текучесть таких жидкостей невозможно характеризовать одним единственным показателем вязкости.

Для некоторых жидкостей увеличение скорости сдвига не приводит к соответствующему повышению напряжения сдвига. Это означает, что увеличение скорости сдвига облегчает перемешивание таких веществ, что отличает их от «ньютоновских» или дилантатных жидкостей. Подобное поведение жидкости называют псевдопластическим, оно приводит к распространенному явлению, называемому «разжижением вещества». Примером псевдопластического вещества стоматологического назначения является силиконовый оттискной материал, который за счет разжижения при увеличении скорости сдвига будет значительно легче вытекать из шприца, чем вещество, не обладающее псевдопластичностью.

Тиксотропия

До настоящего момента полагали, что если известны значения напряжения и скорости сдвига в данный момент времени, то можно определить вязкость. Для некоторых веществ при определенной скорости сдвига вязкость будет меняться, и если построить график в системе координат «напряжение сдвига — скорость сдвига», то можно увидеть картину, представленную на Рис. 1.8.4.

Рис. 1.8.4. Характеристика тиксотропного поведения жидкостей

В этом случае, вязкость, наблюдаемая при повы шении скорости сдвига, отличается от таковой, при снижении этой скорости. Подобное явление называется гистерезисом. В таких случаях вязкость жидкости зависит от предшествующих деформаций, которым эта жидкость ранее подвергалась.

Этот тип поведения жидкости наблюдается в тех случаях, когда в результате перемешивания в ней произошло перераспределение молекул, и при этом молекулам не хватило времени снова вернуться к своему нормальному положению, имевшему место до перемешивания. Таким образом, чем дольше перемешивать жидкость с заданной скоростью сдвига, тем ниже будет напряжение сдвига, тем меньше будет вязкость этой жидкости. Однако если жидкость после перемешивания оставить на какое-то время, молекулы вернутся к своему нормальному распределению, и тогда весь процесс можно будет проводить снова. Такой тип поведения жидкости называется тиксотропным. Примером тиксотропной жидкости являются красители, не стекающие с кисти художника.

Клиническое значение

Реологические свойства материалов имеют большое значение потому, что они существенным образом определяют технологические характеристики материала.

Вязкоэластичность

Многие материалы по физическим свойствам находятся где-то посередине между вязкой жидкостью и упругим твердым телом. Считается, что у упругого твердого материала соотношение между напряжением и деформацией не зависит от каких бы то ни было динамических факторов, таких, как скорость приложения нагрузки или скорость деформации. Однако если материал нагружен в течение достаточного времени, в некоторых твердых веществах под воздействием нагрузок происходит перераспределение молекул, что приводит к изменению величины деформации материала. После снятия нагрузки, материал не способен сразу же вернуться в исходное состояние. Это означает, что поведение материала зависит от таких факторов, как «длительность нагрузки» и «величина прилагаемой нагрузки».

Простым и эффективным способом наглядного представления этих свойств является использование модели, основанной на комбинации пружины и масляного амортизатора, представляющей собой устройство для поглощения энергии удара. Пружина играет роль упругого элемента, а масляный амортизатор — вязкого. Изменение деформации этой модели со временем представлено на Рис.1.8.5. Для пружины приложение нагрузки приведет к моментальной деформации, которая будет сохраняться в течение всего времени действия нагрузки. Сразу же после снятия нагрузки пружина вернется в исходное состояние за счет сил упругости. Для масляного амортизатора, напротив, приложение нагрузки приведет к постепенному нарастанию деформации в течение всего времени

действия нагрузки. После снятия нагрузки деформация не исчезнет, и масляный амортизатор останется в новом положении.

Рис. 1.8.5. Графическая характеристика упругого поведения пружины и вязкого масляного амортизатора

При параллельном соединении этих двух элементов можно получить простую модель вязкоэластичности. Реакция такой модели на нагрузку представлена на Рис. 1.8.6. В этой модели масляный амортизатор препятствует резкой деформации упругой пружины. При этом деформация масляного амортизатора постепенно позволяет пружине приближаться к желаемому состоянию деформирования. При снятии нагрузки, масляный амортизатор препятствует возвращению пружины в исходное состояние, которое, в конце концов, может быть достигнуто через определенное время.

Рис. 1.8.6. Вязкоэластичное поведение пружины и амортизатора, соединенных параллельно

Вязкоэластичными свойствами обладает группа эластомерных оттискных материалов. Кривая в координатах «деформация-время» для эластомеров и отвечающая ей модель, основанная на упругом, вязком и вязкоэластичном элементах, представлена на Рис. 1.8.7. Для того, чтобы избежать избыточной постоянной деформации этих материалов, их не следует нагружать дольше положенного времени. По этой причине эластомерный оттискной материал удаляют из полости рта коротким резким рывком. Чем быстрее будет приложена и снята нагрузка, тем более упругой будет реакция материала.

Рис. 1.8.7. Вязкоэластичная модель реологического поведения полностью отвержденного эластомерного оттискного материала.

Нагрузка, приложенная в момент to приводит к мгновенному растяжению пружины А, а деформация пружины D запаздывает из-за противодействия амортизатора С. Через некоторое время амортизаторы С и В срабатывают и приводят к дальнейшей деформации. В момент t1 нагрузка снимается, пружина А мгновенно возвращается в исходное состояние. Амортизатор С препятствует возвращению пружины D в исходное состояние. Постепенно к моменту t2 пружина возвращается к своей первоначальной длине. Некоторая величина остаточной деформации сохраняется, так как поршень масляного амортизатора В не вернулся в свое исходное положение

Клиническое значение

Некоторые материалы по своим свойствам занимают промежуточное положение между жидкостью и твердым телом, что обуславливает их склонность к деформации.

Основы стоматологического материаловедения
Ричард ван Нурт

Источник

РЕОЛОГИЯ

РЕОЛОГИЯ – наука о деформациях и текучести сплошных сред, обнаруживающих упругие, пластические и вязкие свойства в различных сочетаниях. Упругие деформации возникают в теле при приложении нагрузки и исчезают, если нагрузки снять; пластические деформации появляются только в том случае, когда вызванные нагрузкой напряжения превышают известную величину – предел текучести; они сохраняются после снятия нагрузки; вязкое течение отличается тем, что оно возникает при любых сколь угодно малых напряжениях, с ростом напряжений увеличивается скорость течения, и при сохранении напряжений вязкое течение продолжается неограниченно. Еще одно свойство, которым могут обладать среды, изучаемые реологией, – это высокоэластичность, характерная, например, для резины, когда резиновая лента допускает десятикратное растяжение, а после снятия нагрузки практически мгновенно восстанавливает первоначальное состояние.

Реологические свойства это что. Смотреть фото Реологические свойства это что. Смотреть картинку Реологические свойства это что. Картинка про Реологические свойства это что. Фото Реологические свойства это что

Типичный реологический процесс – это сравнительно медленное течение вещества, в котором обнаруживаются упругие, пластические или высокоэластические свойства. Само слово реология происходит от греческого rew – течение; афоризм «все течет» по-гречески звучит panta rei – (па’нта ре’и). Реологические явления проявляются во многих природных процессах и в большом числе технологических. Очень многочисленны вещества, участвующие в таких процессах: это породы, составляющие земную кору, магма, вулканическая лава, это нефть и глинистые растворы, играющие важнейшую роль в добыче нефти; влажная глина, цементная паста, бетон и асфальтобетон (смесь асфальта и песка, которой покрывают тротуар), это масляные краски – смесь масла и частиц пигмента; это растворы и расплавы полимеров в процессе изготовления нитей, пленок, труб путем экструзии; наконец, это – хлебное тесто и тестообразные массы, из которых изготовляют конфеты, сосиски, кремы, мази, зубные пасты, это твердое топливо для ракет; это, наконец, белковые тела, например, мышечные ткани. В этот не полный перечень «реологических» сред входят как тела, которые естественно считать твердыми (бетон), так и жидкие – нефть. Еще один опыт можно провести с высокомолекулярным раствором полиэтиленоксида в воде. Если, наклонив стакан А, начать переливать из него раствор в нижний стакан Б (рис. 1), а потом аккуратно вернуть стакан А на место, то окажется, что тонкая струйка раствора продолжает перетекать из верхнего стакана в нижний: интересно, что эта струйка сначала поднимается вверх по вертикальной стенке стакана А, а затем, переливается через край и стекает вниз, в стакан Б – это своеобразный сифон, но без сифонной трубки.

Реологические свойства это что. Смотреть фото Реологические свойства это что. Смотреть картинку Реологические свойства это что. Картинка про Реологические свойства это что. Фото Реологические свойства это что

Совсем простой опыт невольно ставит тот, кто испачкал пальцы смолой, резиновым клеем или густым сахарным сиропом: попытка разлепить пальцы приводит к образованию упругих нитей, которые вытягиваются из текучей среды. Именно так образуется паутина и шелковая нить.

Итак, механические свойства разных реологических сред, во-первых, весьма разнообразны, и, во-вторых, оказываются существенно различными в зависимости от условий нагружения.

Очень многие реологические среды являются дисперсными системами двух или трех фаз: это мелкие твердые частицы, распределенные в вязкой жидкости (суспензия или гель, если твердая фаза преобладает), или это мелкие капельки одной жидкости в другой – эмульсия, или пузырьки воздуха в жидкости (пена), и т.д. Но, тем не менее, реология рассматривает такую среду как однородную, но обнаруживающую такие же механические свойства, как и те, что установлены в опытах с реальным конкретным материалом. Этот подход, характерный для механики сплошных сред, позволяет избежать трудностей, связанных с изучением механизмов взаимодействия фаз, и сравнительно просто описать основные черты поведения реологических сред при воздействии на них заданных нагрузок. Такие теории называются феноменологическими.

Математическая модель механических свойств данной среды задается уравнением, связывающим напряжения, имеющиеся в окрестности некоторой точки среды, и деформации, возникающие вследствие этого, причем в это уравнение могут входить и скорости напряжений и деформаций, т.е. их производные по времени, и интегралы по времени от напряжений или деформаций.

Это уравнение называется реологическим уравнением состояния среды или ее определяющим соотношением, и играет роль, аналогичную роли уравнения состояния идеального газа, нужно только иметь в виду, что уравнение состояния газа гораздо точнее отражает свойства конкретного газа, чем реологическое уравнение – свойства некоторой вязко-упруго-текучей среды, что объясняется очевидной причиной – очень высокой сложностью тех сред, которые изучает реология.

Определяющее соотношение должно быть сформулировано как связь тензоров напряжений и деформаций на основе всех известных опытных данных, но сами опыты эту связь не устанавливают, а лишь показывают ее проявления в некоторых частных случаях.

Простой и наглядный способ построения реологического уравнения состояния состоит в том, что каждое основное свойство среды можно смоделировать подходящим элементом, то есть упругость – пружинкой, вязкость – поршнем в цилиндре с вязкой жидкостью, пластичность – элементом с сухим трением (рис. 2).

Реологические свойства это что. Смотреть фото Реологические свойства это что. Смотреть картинку Реологические свойства это что. Картинка про Реологические свойства это что. Фото Реологические свойства это что

Соединив тем или иным образом эти элементы, получают модель образца для механических испытаний, свойства которого в общих чертах можно определить теоретически. Это позволяет, изучив опыты с конкретным материалом, подобрать такое соединение элементов, чтобы обеспечить качественное соответствие реальным опытам, подбирая жесткость пружинки, вязкость масла в поршне, величину коэффициента сухого трения, можно добиться достаточно точного совпадения экспериментальных кривых и их модельного представления (если, конечно, структура модели правильно организована и достаточно богата для описания данного материала). Если модель из элементов построена, то написание математического соотношения производится по определенным правилам, причем сравнительно простым.

Модель, составленную из пружинок и поршеньков, можно только растягивать, но растяжению в модели могут соответствовать и сжатие, и сдвиг, и объемная деформация в натурной среде.

Можно построить модель вязко-упругого тела, последовательно соединив упругий и вязкий элементы (рис. 3).

Реологические свойства это что. Смотреть фото Реологические свойства это что. Смотреть картинку Реологические свойства это что. Картинка про Реологические свойства это что. Фото Реологические свойства это что

Если эту систему быстро нагрузить (дернуть), то вязкий элемент не успеет сдвинуться с места и будет вести себя, как замороженный, а деформацию возьмет на себя пружина – и модель ведет себя как упругое тело. Наоборот, при медленном нагружении, например, при постоянной силе, к некоторой небольшой постоянной деформации пружины прибавляется в принципе неограниченно возрастающая деформация вязкого элемента, т.е. модель ведет себя как упругая жидкость, которую называют жидкостью Максвелла (а также телом или моделью Максвелла). Эта жидкость не подчиняется закону вязкости Ньютона и поэтому называется неньютоновской жидкостью.

Закон Гука применительно к пружине имеет вид

где Dg – упругое удлинение пружины, P – сила, C – жесткость пружины.

Для вязкой жидкости справедлив закон Ньютона, который применительно к перемещению поршня в цилиндре дает

Реологические свойства это что. Смотреть фото Реологические свойства это что. Смотреть картинку Реологические свойства это что. Картинка про Реологические свойства это что. Фото Реологические свойства это что

здесь Da – вязкое смещение поршня в цилиндре, M – коэффициент вязкого сопротивления.

Уравнение, описывающее зависимость удлинения модели (рис. 3) D от величины силы Реологические свойства это что. Смотреть фото Реологические свойства это что. Смотреть картинку Реологические свойства это что. Картинка про Реологические свойства это что. Фото Реологические свойства это чтополучают, сложив упругое удлинение пружины Dg и вязкое удлинение системы «цилиндр-поршень» Da ; но поскольку скорость вязкого удлинения матрицы d Da / dt известна, то удобнее найти скорость удлинения модели d D / dt по формуле

Реологические свойства это что. Смотреть фото Реологические свойства это что. Смотреть картинку Реологические свойства это что. Картинка про Реологические свойства это что. Фото Реологические свойства это что

Таким образом, уравнение модели имеет вид:

Реологические свойства это что. Смотреть фото Реологические свойства это что. Смотреть картинку Реологические свойства это что. Картинка про Реологические свойства это что. Фото Реологические свойства это что

Реологические свойства это что. Смотреть фото Реологические свойства это что. Смотреть картинку Реологические свойства это что. Картинка про Реологические свойства это что. Фото Реологические свойства это что

Реологические свойства это что. Смотреть фото Реологические свойства это что. Смотреть картинку Реологические свойства это что. Картинка про Реологические свойства это что. Фото Реологические свойства это что

Реологические свойства это что. Смотреть фото Реологические свойства это что. Смотреть картинку Реологические свойства это что. Картинка про Реологические свойства это что. Фото Реологические свойства это что

и за время T уменьшается в e раз, (e » 2,71828 – основание натуральных логарифмов). Таким образом, время релаксации T характеризует скорость убывания напряжений в описанном процессе при e = const, который называется процессом релаксации.

Реологическое уравнение Максвелла пригодно для качественного описания процессов в стекловидных и полимерных материалах. Для хорошего количественного описания используются более сложные модели.

Выражение для s = f(t) содержит интеграл по времени от начала процесса до текущего момента; поэтому значение напряжения s в момент t зависит от значений e во все предшествующие моменты от 0 до t, поэтому такие модели называют «материалами с памятью».

Для описания реологических свойств суглинка, имеющего структуру геля, в котором частицы песка соединяются цепочками коллоидных частиц глины, а промежутки заполнены водой, Кельвин предложил схему, в которой упругий и вязкий элементы соединены параллельно, т.е. так, что их деформации одинаковы (рис. 4).

Реологические свойства это что. Смотреть фото Реологические свойства это что. Смотреть картинку Реологические свойства это что. Картинка про Реологические свойства это что. Фото Реологические свойства это что

Соответствующее реологическое уравнение получается аналогично тому, как это сделано для среды Максвелла, но с учетом того, что в модели Кельвина одинаковы деформации элементов, а общее напряжение получается суммированием напряжений в вязком и упругом элементах:

Анализ показывает, что среда Кельвина является твердым телом, похожим на губку, пропитанную вязкой жидкостью.

Примером более сложной модели является среда Бингама, модель которой представлена на рис. 4. Если увеличивать силу P, то сначала деформируется только пружина; затем, при определенном значении силы P, преодолевается сила трения бруска о поверхность и начинается его движение, сопротивление которому оказывает не только трение, но и вязкое сопротивление поршня в цилиндре (рис. 5).

Реологические свойства это что. Смотреть фото Реологические свойства это что. Смотреть картинку Реологические свойства это что. Картинка про Реологические свойства это что. Фото Реологические свойства это что

Считается, что реология началась именно с этой модели, не укладывающейся в рамки взаимодействия классических сред – упругого тела и вязкой жидкости. Среда Бингама была введена для описания поведения свежей масляной краски, когда было установлено, что она является пластическим твердым телом, а не вязкой жидкостью.

Реологические модели, получаемые путем комбинирования основных элементов (упругость, вязкость, трение) качественно описывают поведение под нагрузкой реальных сред, но наблюдаются при этом значительные количественные отклонения. Но известны эффекты, для описания которых в настоящее время еще не создана удовлетворительная теория. В первую очередь, это так называемый эффект Вайсенберга. Он проявляется, в частности, в следующем опыте (рис. 6): Пусть есть два одинаковых стакана – один с ньютоновской вязкой жидкостью, например, с растительным маслом, другой – с концентрированным раствором высокополимерного вещества (например, сладкого сгущенного молока); оба стакана приводятся во вращение вокруг своих осей. Сверху в стаканы опущены неподвижные круглые стержни. В стакане с маслом видна ожидаемая картина – жидкость принимает форму тела вращения с параболической поверхностью, вертикальная координата которой возрастает с удалением от центра. Но в другом стакане жидкость начнет медленно подниматься по центральному неподвижному стержню, в результате чего уровень поверхности у оси оказывается выше, чем у краев.

Реологические свойства это что. Смотреть фото Реологические свойства это что. Смотреть картинку Реологические свойства это что. Картинка про Реологические свойства это что. Фото Реологические свойства это что

Не менее интересен и «эффект Томса». В 1940-х многие исследователи замечали, что течение жидкости по трубопроводу сильно облегчается (снижается гидравлическое сопротивление), если в низкомолекулярную жидкость добавить очень малое (доли процента) количество растворимого полимера. Оказалось, что можно достигнуть четырехкратного снижения гидравлического сопротивления воды в трубе, добавляя несколько миллионных долей (по весу) подходящего высокомолекулярного вещества. Этот эффект используется в некоторых нефтепроводах, пожарных шлангах; есть исследования по снижению кровяного давления у животных.

Изучение реальных сред со сложными свойствами не обязательно относят к реологии: теория неньютоновской жидкостей, теория вязкоупругости и вязкопластичности, теория ползучести металлов при высоких температурах, механика природных процессов – это самостоятельные научные направления, с которыми связаны многие важнейшие достижения как в области теории, так и в области практики – от медицины до космоса, от снежных лавин до дрейфа континентов.

Рейнер М. Деформация и течение. М., 1963
Рейнер М. Реология. М., Наука, 1965
Бленд Д. Теория линейной вязкоупругости. М., 1965
Работнов Ю.Н. Теория ползучести. М., Наука, 1966
Лодж А.С. Эластичные жидкости. М., 1969
Шульман З.П. Беседы о реофизике. Минск, Наука и техника, 1976

Источник

РЕОЛОГИЯ

(от греч. rheos-течение, поток и logos-слово, учение), наука, изучающая деформац. св-ва реальных тел. Р. рассматривает действующие на тело мех. напряжения и вызываемые ими деформации, как обратимые, так и необратимые (остаточные). В узком смысле-термин «Р.» иногда относят только к изучению течения вязких и пластичных тел. Объектами Р. являются самые разнообразные материалы: полимеры (расплавы, р-ры, армированные и наполненные композиц. материалы, резины), дисперсные системы (пены, эмульсии, суспензии, порошки, пасты), металлы и сплавы (особенно при высоких т-рах), нефтепродукты, грунты, гор-ные породы, строит. материалы (бетоны, битумы, силикаты), пищ. продукты и т. п. Биореология изучает механические св-ва биологических жидкостей (крови, синовиальной, плевральной жидкостей) и деформац. св-ва мышц, сосудов и пр.

Термин «Р.» предложен Ю. Бингамом; официально принят в 1929.

Осн. задача Р.-установление зависимости между мех. напряжениями s и деформациями e, а также их изменениями во времени t; ур-ние f(s, e, t) =0 наз. реологич. ур-нием состояния (РУС). Знание РУС необходимо для решения гидродинамич. задач, а также для количеств. описания поведения техн. материалов при произвольных условиях нагружения. Осн. внимание уделяется таким условиям нагружения, когда одновременно проявляются вязкие и пластич. или вязкие и упругие св-ва в-ва. Р. также рассматривает задачу установления соответствия между особенностями деформац. поведения конкретного материала и его структурой.

Простейшие (предельные) РУС-линейные соотношения между деформацией (или скоростью деформации) и напряжением. Для твердых тел это-закон Гука s = Ee, где s-нормальное (растягивающее) напряжение, e-относит. деформация растяжения, Е- модуль упругости; для жидкостей-закон Ньютона-Стокса Реологические свойства это что. Смотреть фото Реологические свойства это что. Смотреть картинку Реологические свойства это что. Картинка про Реологические свойства это что. Фото Реологические свойства это что, где т-касательное напряжение, Реологические свойства это что. Смотреть фото Реологические свойства это что. Смотреть картинку Реологические свойства это что. Картинка про Реологические свойства это что. Фото Реологические свойства это что-скорость деформации сдвига, h-сдвиговая вязкость. Соотв. определяют два крайних по своему деформац. поведению типа сред-упругое тело, при деформировании к-рого не происходит диссипации (рассеяния) энергии, и жидкость, не способная запасать энергию деформирования.

Существуют три осн. реологич. модели для тел, не подчиняющихся этим соотношениям: вязкоупругие (и упруговяз-кие) среды, пластичные тела и неньютоновские жидкости. Реальные материалы могут сочетать мех. св-ва, характерные для разл. моделей. При достаточно малых напряжениях, деформациях или скорости деформирования все РУС линейны, но при возрастании деформаций или напряжений мех. поведение тела становится более сложным и описывается нелинейными РУС. Соотв. различают линейные и нелинейные тела (среды, материалы).

Для сложного процесса мех. воздействия в области линейного поведения тела, т. е. когда f(t) не зависит от e, а y(t)-от s, справедлив принцип суперпозиции Больцмана, согласно к-рому реакция тела на любое последующее на гружение не зависит от действия всех предшествующих нагрузок. Математически этот принцип выражается РУС в виде интеграла Больцмана-Вольтерры:

Реологические свойства это что. Смотреть фото Реологические свойства это что. Смотреть картинку Реологические свойства это что. Картинка про Реологические свойства это что. Фото Реологические свойства это что

При сдвиговом течении вязкоупругих жидкостей кроме обычных необратимых деформаций вязкого течения накапливаются и сохраняются в потоке большие упругие (высоко-эластич.) деформации. Это приводит к возникновению дополнит. напряжений (помимо сдвиговых), перпендикулярных плоскости сдвига (т. наз. нормальные напряжения). Из-за нормальных напряжений наблюдается ряд реологич. аномалии, объединяемых общим назв. эффекта Вайсен-берга: подъем вязкоупругой жидкости по стержню, вращающемуся в вязкоупругой среде; появление силы, стремящейся раздвинуть два параллельно расположенных диска, вращающихся в вязкоупругой жидкости, и др. Эти явления характерны для расплавов и р-ров полимеров.

Хотя реологич. св-ва жидкостей наиб. часто измеряют в условиях сдвигового течения, для высоковязких жидкостей теоретич. и практич. интерес представляет также одноосное (продольное) растяжение. Для ньютоновских жидкостей вязкость при растяжении равна 3h (закон Трутона); для вязкоупругих жидкостей она может значительно отличаться от 3h, что также связано с нелинейностью вязкоупругих св-в.

В жидких дисперсных системах, особенно высоконаполненных твердой фазой, разрывы сплошности возникают при относительно низком значении скорости сдвиговой деформации. Появление разрывов сплошности исключает возможность построения для таких систем полной реологич. кривой течения (см. ниже), а также служит главным препятствием для получения однородных многокомпонентных систем, напр. при перемешивании.

Р. вязкоупругих полимеров рассматривает также явления, связанные с релаксационными и фазовыми переходами, вызванными процессом деформирования. К явлениям этого типа относится описанный выше переход жидкости в твердообразное состояние при Реологические свойства это что. Смотреть фото Реологические свойства это что. Смотреть картинку Реологические свойства это что. Картинка про Реологические свойства это что. Фото Реологические свойства это что1. При очень больших скоростях деформирования может происходить стеклование полимера с последующим хрупким разрушением. Деформирование концентрир. р-ров полимеров влияет на их кристаллизацию, изменяя как равновесную т-ру фазового перехода, так и его кинетику, а также структуру (и, следовательно, св-ва) кристаллич. в-ва.

Пластичность. Различают упругопластичные тела и вязко-пластичные среды. Упругопластичные тела деформируются в соответствии с законом Гука вплоть до достижения нек-рых критич. условий (предела текучести); затем материал «течет» подобно вязкой жидкости, т. е. деформация линейно возрастает во времени (модель Сен-Венана). Для сложнонапряженного состояния в качестве предела текучести принимают критич. значение максимального касательного напряжения (критерий Треска-Сен-Венана) или интенсивности касательных напряжений (критерий Мизе-са). Важнейшими материалами, реологич. поведение к-рых описывается моделью упругопластич. тела, являются мн. конструкц. материалы, в т. ч. металлы при напряжениях, превышающих предел текучести. Пластич. деформации упругих тел реализуются при нек-рых технол. операциях-штамповке, ковке, прокатке металлов.

Неньютоновские жидкости. Если в условиях установившегося сдвигового течения касательное напряжение т не пропорционально скорости деформирования Реологические свойства это что. Смотреть фото Реологические свойства это что. Смотреть картинку Реологические свойства это что. Картинка про Реологические свойства это что. Фото Реологические свойства это что, т. е. их отношение h =Реологические свойства это что. Смотреть фото Реологические свойства это что. Смотреть картинку Реологические свойства это что. Картинка про Реологические свойства это что. Фото Реологические свойства это чтоизменяется в зависимости от величины т или Реологические свойства это что. Смотреть фото Реологические свойства это что. Смотреть картинку Реологические свойства это что. Картинка про Реологические свойства это что. Фото Реологические свойства это что, то такую жидкость наз. неньютоновской, а отношение Реологические свойства это что. Смотреть фото Реологические свойства это что. Смотреть картинку Реологические свойства это что. Картинка про Реологические свойства это что. Фото Реологические свойства это что-эффективной (или кажущейся) вязкостью. Предложено неск. РУС для описания поведения неньютоновских жидкостей. Во мн. случаях выполняется РУС вида:

Реологические свойства это что. Смотреть фото Реологические свойства это что. Смотреть картинку Реологические свойства это что. Картинка про Реологические свойства это что. Фото Реологические свойства это что

Неньютоновское поведение жидкостей может иметь разл. причины: в жидких дисперсных системах определяющую роль играет ориентация частиц дисперсной фазы, изменение их формы и степени агрегации, в коллоидных жидкостях-постепенно углубляющееся с ростом напряжений разрушение (или изменение) внутр. структуры; в полимерах-эффекты мех. релаксации. В конкретных случаях может иметь место наложение разл. механизмов; напр., неньютоновское поведение наполненных полимеров связано как со структурными перестройками, так и с релаксац. явлениями.

Вязкость жидкостей может зависеть от вибрационных (в т. ч. ультразвуковых), электрич., магн., световых воздействий; это относится как к р-рам и расплавам полимеров, так и к дисперсным системам.

Практическое применение реологич. исследований связано, во-первых, с возможностью сопоставлять разл. материалы по форме РУС и значениям входящих в них констант; во-вторых, с использованием РУС для решения техн. задач механики сплошных сред. Первое направление используется для стандартизации техн. материалов, контроля и регулирования технол. процессов практически во всех областях совр. техники. В рамках второго направления рассматривают прикладные гидродинамич. задачи-транспорт неньютоновских жидкостей по трубопроводам, течение полимеров, пищ. продуктов, строит. материалов в перерабатывающем оборудовании, движение буровых р-ров в пластах и т. д. Для концентрир. дисперсных систем к этим задачам примыкает установление оптим. технол. режимов перемешивания, формования изделий и т. п. Для твердых тел производят расчет напряженно-деформированного состояния конструктивных элементов и изделий в целом для определения их прочности, разрывного удлинения и долговечности.

Практич. интерес представляет также использование специфич. реологич. эффектов. Так, малые полимерные добавки к воде и нефтепродуктам придают жидкости новые реологич. св-ва, благодаря чему резко снижается гидравлич. сопротивление при турбулентном течении (эффект Томса). Этот эффект используют при перекачке нефтей по длинным трубопроводам. При переработке пластмасс применяют бесшнековые экструдеры, давление в к-рых развивается благодаря эффекту Вайсенберга. Добавление в смазочные масла полимерных модификаторов придает им вязкоупру-гие св-ва; в результате при сдвиге возникают нормальные напряжения и повышается несущая способность опор трения.

Геология полимеров. Все полимерные материалы в той или иной степени обладают как упругими, так и диссипативны-ми св-вами, вследствие чего они являются вязкоупругими телами или упруговязкими средами. Реологич. характеристики конкретного полимера зависят от строения его макромолекул, молекулярно-массового распределения, состава композиции в случае сложных полимерных систем, причем иногда чувствительность реологич. методов изучения молекулярной и надмолекулярной структур оказывается гораздо выше, чем традиц. методов оценки мол. параметров. Это выделяет Р. полимеров в один из важных разделов физ.-хим. исследований.

Р. эластомеров и твердых полимерных материалов основывается на выражении для упругой энергии W, накапливаемой материалом при его деформировании, к-рая выражается через инварианты тензора деформации. Исходя из выражения для Wнаходят зависимость напряжения s от деформации e (или степени растяжения к) для любых геом. схем нагружения. Если предполагается чисто энтропийный механизм высокоэластичности (см. Высокоэластическое состояние), зависимость s(к) для одноосного растяжения имеет вид:

Реологические свойства это что. Смотреть фото Реологические свойства это что. Смотреть картинку Реологические свойства это что. Картинка про Реологические свойства это что. Фото Реологические свойства это что

где G- модуль высокоэластичности (при сдвиге).

В Р. резин часто используют т. наз. двучленную (двух-константную) ф-лу, к-рая для одноосного растяжения включает эмпирич. постоянные С 1 и С 2 :

Реологические свойства это что. Смотреть фото Реологические свойства это что. Смотреть картинку Реологические свойства это что. Картинка про Реологические свойства это что. Фото Реологические свойства это что

Для наполненных эластомеров проявляются реологич. эффекты, обусловленные внутр. структурой наполнителя. Так же, как и для текучих сред, в резинах наблюдаются тиксо-тропные явления, состоящие в том, что при повторных нагружениях деформац. кривые меняются и постепенно восстанавливаются исходные св-ва материала при отдыхе (эффект Маллинза). При периодич. деформациях нелинейность мех. поведения (зависимость модуля упругости от амплитуды деформации) возникает при крайне малых деформациях подобно тому, как это имеет место, напр., в дисперсных системах с низкомол. дисперсионной средой. Так же, как и для р-ров линейных полимеров, высокоскоростное деформирование резины может приводигь к мех. стеклованию, а растяжение до высоких значений способствует кристаллизации.

Задача Р. жестких полимерных материалов (пластмасс, армир. пластиков)-установление вида релаксац. спектра для линейной области мех. поведения и обобщение этого спектра на нелинейную область. Как правило, рассматривают небольшие (в геом. смысле) деформации и одновременно с проблемами собственно Р. (ползучестью, релаксацией) изучают условия разрушения материала. Предложено неск. РУС для конкретных материалов, позволяющее решать разл. прикладные задачи, связанные с их деформированием в условиях длит. нагружения, когда непосредственно проявляются релаксац. св-ва среды.

При деформировании жестких материалов, помимо ползучести, релаксации и нелинейных явлений, характерных для любых др. сред, наблюдается удлинение образца при сдвиговых деформациях (напр., при кручении проволок). Это-проявление геом. нелинейности, аналогичное эффекту Вай-сенберга в упругих жидкостях. При повторных деформациях кристаллич. полимеров часто имеет место невоспрризводи-мость реологич. кривых, связанная с разрушением кристаллич. структуры,-эффект, аналогичный тиксотропии наполненных эластомеров и текучих дисперсных систем. Наконец, при растяжении твердых пластмасс в нек-ром диапазоне т-р (ниже т-ры стеклования, но выше т-ры хрупкости) по достижении определенной критич. деформации наступает резкое изменение механизма деформирования-ступенчатое сужение исходного образца с формированием однородной «шейки» (явление вынужденной высокоэластич-ности), к-рое можно трактовать как потерю устойчивости процесса деформирования, вызванную релаксац. переходом или изменением кристаллич. структуры.

Существует два осн. типа моделей структуры дисперсной системы. В первом случае предполагается, что в системе существует непрерывная сетка межчастичных связей, к-рую можно рассматривать как квазикристаллич. решетку. Часть узлов решетки свободна («вакансии»). Возможность течения системы обусловлена перемещением этих вакансий под действием сдвигового напряжения. Во второй модели рассматриваются группы частиц, двигающиеся как единое целое (агрегаты или блоки). Текучесть системы зависит от размера агрегатов, к-рый, в свою очередь, определяется скоростью деформации. Эта модель соответствует случаю более глубокого разрушения структуры при деформировании. Если структура имеет неоднородности, что характерно для высококонцентрир. систем, при деформировании может образоваться разрыв сплошности, т. е. появляется зона локализации сдвига с пониж. концентрацией дисперсной фазы. Рассматривая это явление по аналогии с образованием трещины в кристалле и используя критерий Гриффитса для роста трещины (см. Прочность),можно считать, что образование разрыва сплошности произойдет при Реологические свойства это что. Смотреть фото Реологические свойства это что. Смотреть картинку Реологические свойства это что. Картинка про Реологические свойства это что. Фото Реологические свойства это что, где l-характерный размер неоднородности, аи F-соотв. размер частиц и сила связи между ними, обусловленная межмол. притяжением.

Как и для вязкоупругих жидкостей, мерой перестройки структуры дисперсных систем является отношение характерных времен структурных изменений d и деформирования Реологические свойства это что. Смотреть фото Реологические свойства это что. Смотреть картинку Реологические свойства это что. Картинка про Реологические свойства это что. Фото Реологические свойства это что. Напр., для высокодисперсных суспензий величина d определяется броуновским движением частиц (d

h S a> 3 /kT )и межчастичным взаимод. (d

h S a> 2 /F) (k- постоянная Больцмана). Из этих двух причин большую роль, как правило, играет та, к-рой соответствует меньшая величина Реологические свойства это что. Смотреть фото Реологические свойства это что. Смотреть картинку Реологические свойства это что. Картинка про Реологические свойства это что. Фото Реологические свойства это что

Реологические свойства это что. Смотреть фото Реологические свойства это что. Смотреть картинку Реологические свойства это что. Картинка про Реологические свойства это что. Фото Реологические свойства это что

Микрореология полимеров основана на мол.-кине-тич. моделях, представляющих полимер набором последовательно соединенных друг с другом максвелловских тел, диспергированных в вязкой или вязкоупругой среде (модели Каргина-Слонимского-Рауза и др.). Эти модели позволили объяснить и предсказать форму релаксац. спектра полимера, оценить влияние длины цепи и содержания полимера в р-ре на времена релаксации. Согласно т. наз. скейлинговой концепции, в первом приближении все длинноцепочечные полимеры проявляют подобные св-ва при надлежащем выборе масштаба сравнения, а определяющую роль в проявлении реологич. св-в полимерных систем играет только длина цепи, но не ее хим. строение. Этот подход позволил получить выражения, описывающие с точностью до численных коэффициентов реологич. св-ва полимерных материалов с помощью степенных ф-ций, подобных вышеприведенной зависимости h от М.

Микрореология и теория скейлинга (подобия) позволяют обосновать и объяснить физ. смысл параметров в РУС.

Реологические свойства это что. Смотреть фото Реологические свойства это что. Смотреть картинку Реологические свойства это что. Картинка про Реологические свойства это что. Фото Реологические свойства это что

Разрушение структуры дисперсной системы при вибрации и связанное с этим уменьшение вязкости можно интерпретировать как «плавление», воспользовавшись представлениями о квазикристаллич. характере структуры. Такое «плавление» является следствием сообщения источником вибрации кинетич. энергии Eчастицам. Одновременно в результате добавления в систему ПАВ уменьшается потенц. энергия Uмежчастичных связей. Вязкость h виброожижен-ной системы зависит от параметра E/U, причем

Магнитореологич. феррожидкости могут содержать частицы коллоидных размеров или быть грубодисперсными суспензиями, в к-рых твердая фаза-частица карбонильного железа, электролитич. или карбонильного никеля в различных, преим. орг., средах. Коллоидные феррожидкости характеризуются плавным переходом в область нелинейной вязкоупругости (магнитомягкие жидкости), суспензии обнаруживают под действием магн. поля резкое увеличение вязкости, предельного напряжения сдвига, модуля упругости (магнитожесткие жидкости).

Магнитореологич. св-ва жидкостей используют в разл. преобразователях и исполнит. механизмах, дросселях, насосах-дозаторах, амортизаторах и т. п. Это позволяет отказаться от сложных подвижных мех. устройств, уменьшить габариты и увеличить надежность аппаратов.

Лит.: Реология суспензий, пер. с англ., М., 1975; Виноградов Г. В., Малкин А. Я., Реология полимеров, М., 1980; Урьев Н. Б., Высококонцентрн-рованные дисперсные системы, М., 1980; Левтов В. А., Регирер С. А., Шадрина И. Х., Реология крови, М., 1982; Щульман З. П., Кордонский В. И., Магнитореологический эффект, Минск, 1982; Шкурина К. П., Фалалеев Г. Н., Вазетдинола Ф. 3., Реологические свойства горных пород и прогнозирование устойчивости подготовительных выработок, Fr., 1984; Малкин А. Я., Кули-чихин С. Г.. Реология в процессах образования и превращения полимеров, М., 1985; Вострокнутов Е. Г., Виноградов Г. В., Реологические основы переработки эластомеров, М., 1988; Урьев Н. Б., Физико-химические основы технологии дисперсных систем и материалов, М., 1988.

А. Я. Малкин, H. Б. Урьев.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *