с чем реагирует углекислый газ
Физические и химические свойства углекислого газа
Формула – СО2. Молярная масса – 44 г/моль.
Химические свойства углекислого газа
Углекислый газ относится к классу кислотных оксидов, т.е. при взаимодействии с водой он образует кислоту, которая называется угольная. Угольная кислота химически неустойчива и в момент образования сразу же распадается на составляющие, т.е. реакция взаимодействия углекислого газа с водой носит обратимый характер:
При нагревании углекислый газ распадается на угарный газ и кислород:
Как и для всех кислотных оксидов, для углекислого газа характерны реакции взаимодействия с основными оксидами (образованными только активными металлами) и основаниями:
Углекислый газ не поддерживает горения, в нем горят только активные металлы:
CO2 + 2Mg = C + 2MgO (t);
CO2 + 2Ca = C + 2CaO (t).
Углекислый газ вступает в реакции взаимодействия с простыми веществами, такими как водород и углерод:
CO2 + 4H2 = CH4 + 2H2O (t, kat = Cu2O);
CO2 + C = 2CO (t).
При взаимодействии углекислого газа с пероксидами активных металлов образуются карбонаты и выделяется кислород:
Качественной реакцией на углекислый газ является реакция его взаимодействия с известковой водой (молоком), т.е. с гидроксидом кальция, в которой образуется осадок белого цвета – карбонат кальция:
Физические свойства углекислого газа
Углекислый газ – газообразное вещество без цвета и запаха. Тяжелее воздуха. Термически устойчив. При сжатии и охлаждении легко переходит в жидкое и твердое состояния. Углекислый газ в твердом агрегатном состоянии носит название «сухой лед» и легко возгоняется при комнатной температуре. Углекислый газ плохо растворим в воде, частично реагирует с ней. Плотность – 1,977 г/л.
Получение и применение углекислого газа
Выделяют промышленные и лабораторные способы получения углекислого газа. Так, в промышленности его получают обжигом известняка (1), а в лаборатории – действием сильных кислот на соли угольной кислоты (2):
CaCO3 = CaO + CO2 (t) (1);
Углекислый газ используется в пищевой (газирование лимонада), химической (регулировка температур при производстве синтетических волокон), металлургической (защита окружающей среды, например, осаждение бурого газа) и других отраслях промышленности.
Примеры решения задач
Задание | Какой объем углекислого газа выделится при действии 200 г 10%-го раствора азотной кислоты на 90 г карбоната кальция, содержащего 8% примесей, нерастворимых в кислоте? |
Решение | Молярные массы азотной кислоты и карбоната кальция, рассчитанные с использованием таблицы химических элементов Д.И. Менделеева – 63 и 100 г/моль, соответственно. |
Запишем уравнение растворения известняка в азотной кислоте:
Содержание чистого (без примесей) карбоната кальция в известняке:
ω(CaCO3)cl = 100% — ωadmixture = 100% — 8% = 92% = 0,92.
Тогда, масса чистого карбоната кальция:
Количество вещества карбоната кальция равно:
n(CaCO3) = 82,8 / 100 = 0,83 моль.
Масса азотной кислоты в растворе будет равна:
m(HNO3) = 200 × 10 / 100% = 20 г.
Количество вещества азотной кислоты кальция равно:
n(HNO3) = 20 / 63 = 0,32 моль.
Сравнивая количества веществ, вступивших в реакцию, определяем, что азотная кислота находится в недостатке, следовательно дальнейшие расчеты производим по азотной кислоте. Согласно уравнению реакции n(HNO3): n(CO2) = 2:1, следовательно n(CO2) = 1/2×n(HNO3) = 0,16 моль. Тогда, объем углекислого газа будет равен:
Задание | Найдите объем углекислого газа массой 35 г. |
Решение | Масса вещества и его объем связаны между собой через количество вещества. Запишем формулы для вычисления количества вещества с помощью его массы и объема: |
Приравняет выражения, записанные справа и выразим объем:
Вычислим по выведенной формуле объем углекислого газа. Молярная масса углекислого газа, рассчитанная с использованием таблицы химических элементов Д.И. Менделеева – 44 г/моль.
V (CO2) = 35×22,4 / 44 = 17,82 л.
Взаимодействие углекислого газа с веществами и его химические свойства
Общие химические свойства углекислого газа: CO2 инертен, то есть химически не активен; при попадании в водный раствор легко вступает в реакции.
Большинство кислотных оксидов устойчивы к высоким температурам, но углекислота при их воздействии восстанавливается.
Взаимодействие с другими веществами:
1) Углекислота относится к кислотным оксидам, то есть в сочетании с водой образуется кислота. Однако угольная кислота неустойчива и распадается сразу. Эта реакция имеет обратимый характер:
Диоксид углерода + вода ↔ угольная кислота
2) При взаимодействии углекислого газа и соединений азота с водородом (аммиаком) в водном растворе происходит разложение до углеаммонийной соли.
Аммиак + углекислота = гидрокарбонат аммония
Полученное вещество часто используется в приготовлении хлеба и различных кондитерских изделий.
3) Ход некоторых реакций должен поддерживаться высокими температурами. Примером является производство мочевины при 130 °C и давлении 200 атм., схематически изображаемое так:
Аммиак + диоксид углерода → карбамид + вода
Также под воздействием температуры около 800 градусов протекает реакция образования оксида цинка:
Цинк + двуокись углерода → оксид цинка + оксид углерода
4) Возможно уравнение с гидроксидом бария, при котором выделяется средняя соль.
Гидроксид бария + углекислота = карбонат бария + оксид водорода.
Применяется для регулировки калориметров по теплоемкости. Также вещество используют в промышленности для производства красных кирпичей, синтетических тканей, фейерверков, гончарных изделий, плитки для ванн и туалетов.
5) Углекислый газ выделяется при реакциях горения.
Метан + кислород = углекислота + вода (в газообразном состоянии) + энергия
Этилен + кислород = диоксид углерода + оксид водорода + энергия
Этан + кислород = двуокись углерода + вода + энергия
Этанол + кислород = вода + углекислота + энергия
6) Газ не поддерживает горения, этот процесс возможен только с некоторыми активными металлами, например, магнием.
Магний + углекислота = углерод + оксид магния.
MgO активно применяется при производстве косметических средств. Вещество используют в пищевой промышленности как пищевую добавку.
7) Двуокись углерода реагирует с гидроксидами с получением солей, которые существуют в двух формах, как карбонаты и бикарбонаты. Например, углекислый газ и гидроксид натрия, согласно формуле, образуют гидрокарбонат Na:
диоксид углерода + гидроксид натрия → гидрокарбонат натрия.
Или же при большем количестве NaOH образуется карбонат Na с образованием воды:
Диоксид углерода + гидроксид натрия → карбонат натрия + вода
Кислотно-щелочные реакции углекислоты используются на протяжении веков для затвердевания известкового раствора, что может быть выражено простым уравнением:
Гидроксид кальция + двуокись углерода → карбонат кальция + оксид водорода
В зелёных растениях играет важную роль в процессе фотосинтеза:
Диоксид углерода + вода → глюкоза + кислород.
9) Химические свойства углекислоты используются в промышленности при производстве соды, суть этого процесса можно выразить суммарным уравнением:
Хлорид натрия + Диоксид углерода + аммиак + вода → гидрокарбонат натрия + хлорид аммония
10) Фенолят Na разлагается при взаимодействии с углекислым газом, при этом малорастворимый фенол выпадает в осадок:
Фенолят натрия + двуокись углерода + оксид водорода = фенол + гидрокарбонат натрия
11) Пероксид натрия и углекислый газ, взаимодействуя, образуют среднюю соль карбоната Na с выделением кислорода.
Пероксид натрия + углекислота → карбонат натрия + кислород
Образование углекислоты происходит при растворении в воде кальцинированной соды (стиральной соды).
Гидрокарбонат натрия + вода → углекислота + вода + гидроксид натрия
При этой реакции (гидролиз по катиону) образуется сильнощелочная среда.
12) CO2 вступает в реакцию с гидроксидом калия, последний образуется путем электролиза хлористого калия.
Гидроксид калия + углекислота → карбонат калия + вода
13) Газ в силу своего строения не реагирует с благородными газами, то есть гелием, неоном, аргоном, криптоном, ксеноном, радоном, оганесоном.
Заключение
Мы привели большую часть химических реакций, в которых участвует CO2. Ученые всего мира пытаются решить проблему увеличения концентрации углекислоты в воздухе, не без помощи реакций с другими веществами, которые известны химикам. А какие химические формулы взаимодействия углекислого газа знаете вы?
Спасибо, что указали на ошибку. Исправили.
Скажите пожалуйста На производстве углекислоты мы заменили на комрессорном агрегате старый охладитель углекислого газа с трубками из нержавейки на новый, с латунными трубками. То есть в начале этих трубок охладителя Углекислый газ будет под давлением 16 бар и температурой 130 градусов, на выходе + 10 градусов, всё это с выделением конденсата. Не будет ли какой-то непредвиденной реакции в зоне взаимодействия уг. газа, латуни и воды? Охладитель работает хорошо, но не разрушаться ли трубки от коррозии?
Необходимо определиться для начала, откуда поступает к вам углекислый газ, какие еще газы поступают вместе с углекислым газом в охладитель. У нас, в энергетическом производстве, на определенном участке пароводяного тракта установлены латунные трубки, в которых происходит нагрев теплоносителя. Мы производим замеры растворенного кислорода в конденсате перед подачей его на подогреватели с трубками из латуни. В нашем случае большая концентрация кислорода в воде, при нагревании последней, приводит к коррозии латунных трубок.
Затрудняюсь вам ответить на этот вопрос, надо изучать состав газа на входе в теплообменник. Возможно образование угольной кислоты в теплообменнике. А при наличии кислорода кислота может вызывать коррозию, но это не точно.
Еще один интересный газ – углекислый
Недавние статьи об угарном газе натолкнули меня на мысль продолжить тему оксидов углерода – раз уж сказала «а», то нужно говорить и «б». Раз уж написала об окиси углерода, то по всем законам жанра надо рассказать и о двуокиси, то есть об углекислом газе.
Так что планирую на эту тему несколько статей: об углекислом газе в целом, о его влиянии на организм, а также интересные опыты по получению и свойствам этого вещества. Посмотрим, что из этого выйдет, а то ведь про гомеопатию я тоже не собиралась много писать, а в итоге получилось аж пять статей.
Итак, сегодня я расскажу о том, что такое углекислый газ, как его получают, с чем реагирует углекислый газ и сколько его содержится в воздухе.
Что это такое
Углекислый газ это в нормальных условиях газ, не имеет цвета и запаха, плотность его больше, чем у воздуха, поэтому он в полтора раза тяжелее воздуха.
Имеет несколько названий:Все эти названия и формулу я буду использовать в дальнейшем тексте, чтобы уж слишком не мозолить глаза постоянным словосочетанием «углекислый газ».
Как видно из формулы, молекула углекислого газа состоит из одного атома углерода и двух атомов кислорода.
Немного истории
Углекислый газ был впервые описан голландским химиком Яном (Жаном, Иоганном) Баптистом ван Гельмонтом в начале 17 века. Гельмонт сжигал древесный уголь и наблюдал выделение газа в результате сгорания. Называл он его «лесным духом» и считал разновидностью воздуха.
Также он установил, что такой же газ образуется в результате спиртового брожения и при действии различных кислот на поташ и известняк (карбонаты калия и кальция).
Позже, в середине 18 века, углекислый газ изучал английский химик Джозеф Блэк. Он прокаливал известняк и действовал на него кислотами, в результате чего получал углекислый газ.
Он установил, что этот газ легко поглощается щелочами и за счет этого назвал его «фиксируемым (связанным) воздухом». Именно благодаря Блэку химики узнали о том, что в твердых телах может «содержаться» газ. Это было совершенно новой и неожиданной идеей для того времени.
Свойства
Если диоксид углерода охладить приблизительно до минус 78 градусов по шкале Цельсия, то образуются белые кристаллы – «сухой лёд».
СО2 малорастворим в воде, но если повысить давление, то растворимость значительно увеличивается. Это свойство используют при приготовлении газированных напитков.
При растворении в воде углекислый газ дает очень слабую и неустойчивую в водных растворах угольную кислоту Н2СО3. Долгое время даже считалось, что ее не существует в свободном виде при нормальных условиях. Только недавно ее удалось выделить как самостоятельное вещество, используя низкие температуры (об этом есть заметка в группе «Занимательная химия», ссылки под статьей).
Зато соли этой кислоты очень устойчивы и имеют огромное значение в нашей жизни.
Напоминаю, соли – это вещества, в которых часть молекулы кислоты (любой) соединяется с одним или несколькими атомами металла.
Например, если от угольной кислоты берется кислотный остаток СО3 и соединяется с кальцием Са, мы получаем СаСО3 – карбонат кальция, мел, известняк и еще много других названий.
Если возьмем кислотный остаток НСО3 (в формуле угольной кислоты ведь два атома водорода, вот мы один уберем, а второй оставим в кислотном остатке) и соединим его с натрием Na, то получим NaНСО3 — всем хорошо знакомую пищевую соду.
Таким образом, соли и кислоты – это совершенно разные вещества. Разные как по составу, так и по свойствам. Например, та же угольная кислота жидкая, а мел, как вы знаете, твердый. И т.д.
Один из основных законов химии – свойства зависят от состава. Разный состав – разные свойства. Причем, все свойства. Не какие-то там абстрактные «химические», а все: цвет, агрегатное состояние, плотность, запах, вкус, поведение в организме (то есть участие в биохимических процессах) и т.д.
Вроде бы просто, элементарно, но когда доходит до практики, многие про это забывают и начинают такую чушь говорить…
Я потому так подробно останавливаюсь на формулах, что хорошо помню недавнюю историю с одной моей коллегой (про моих коллег уже, наверное, целую книгу можно издавать).
Она принесла мне «на рецензию» упаковку от китайской соевой лапши и начала биться в истерике, что в её, лапши то есть, состав входит серная кислота. При близком рассмотрении состава в перечне ингредиентов нашелся «кальций сернокислый». На мой закономерный вопрос, где тут серная кислота, мне ткнули пальцем в этот несчастный сульфат кальция с воплем: «Ну он же СЕРНОКИСЛЫЙ. ».
Пришлось на пальцах и на листке бумаге объяснять, что это – только часть кислоты, а не целая молекула. А раз состав изменился, то и свойства изменились. Кальций сернокислый и серная кислота – совершенно разные вещества. Никакой кислоты здесь и в помине нет, опасности тоже нет, ешьте на здоровье (при условии разумной концентрации, естественно).
Короче, кое-как убедила несчастную женщину, которая купила лапшу, прочитала этикетку, в ужасе выбросила лапшу, а этикетку принесла на работу и сунула мне «тыжехимику», чтобы доказать, что мировое правительство нас травит и мы все скоро умрем.
Возвращаемся к свойствам углекислого газа.
Наверное, все еще из школы помнят, что он не поддерживает дыхание и горение. В принципе, верно, но есть исключение. Магний (а также калий, цезий, алюминий, лантан и т. п.), может некоторое время гореть в атмосфере углекислого газа с образованием оксида магния. Именно поэтому пожар, где горят такие вещества, невозможно потушить углекислотным огнетушителем.
Еще одно из свойств, которое как раз изучал Блэк, диоксид углерода хорошо реагирует с щелочами. В одной из следующих статей я покажу несколько опытов с углекислым газом, которые можно провести в домашних условиях.
Упомяну о важном физическом свойстве – плотности. Молекулярная масса углекислого газа равна 44. Это в полтора раза больше воздуха (29). Следовательно, углекислый газ тяжелее воздуха и будет скапливаться в низинах, подвалах и т.д. Это нужно учитывать, если вдруг доведется бывать в местах, где возможно образование и скопление двуокиси углерода.
Применение
Самое основное, пожалуй, «применение» углекислого газа – это использование его растениями в процессах фотосинтеза.
Остальные способы использования человеком кратко перечислю:
Сухой лед
Диоксид углерода в атмосфере
Откуда в атмосфере Земли берется диоксид углерода? Его источниками является дыхание животных и растений, гниение органики, ее горение (в том числе и сжигание ископаемого топлива, то есть угля, нефти, газа), выделение с вулканическими газами и подземными минеральными водами, выветривание горных пород.
Что интересно, около 56% СО2 поступает в атмосферу в результате процессов брожения и минерализации органических веществ, а также дыхания растений, как наземных, так и водных.
38% двуокиси углерода в воздухе дают почвенные микроорганизмы в результате своей жизнедеятельности.
А выделение углекислого газа в результате дыхания людей и животных дает всего лишь 1,6%.
В чистом воздухе за пределами мегаполисов концентрация углекислого газа составляет около 0,04%. Это считается оптимальным содержанием для нормальной жизни человека.
Около 4 миллиардов лет назад атмосфера Земли состояла в основном из диоксида углерода. Однако со временем он постепенно растворялся в воде и вступал в химические реакции с породами земной коры с образованием карбонатов, в основном, кальция и магния. За счет этого содержание двуокиси углерода в атмосфере снижалось, а когда появились зеленые растения, этот процесс стал протекать еще быстрее. К моменту появления человека содержание СО2 в воздухе стало порядка 0,02-0,03% и оставалось на этом уровне до начала промышленной революции.
Потом за счет интенсивного сжигания органического топлива и вырубания лесов концентрация двуокиси углерода повысилась до 0,04%. Вроде бы немного, совсем уж смешные цифры, но в следующих статьях я покажу, что это на самом деле довольно существенное повышение.
Около 50% углекислого газа атмосферы поглощается зелеными растениями в процессе фотосинтеза. Еще около 30% растворяется в Мировом океане. Остальное же, увы, остается нам. Этот газ поглощает исходящее от Земли тепловое (инфракрасное) излучение, накапливает его, что приводит к парниковому эффекту. Конечно, не только СО2 является парниковым газом, их много, но он один из основных, и глобальное потепление и изменение климата – уже не шутка, а реальный факт.
Пожалуй, на этом и закончу сегодняшнюю статью. Надеюсь, было интересно.
Всем отдыхающим – хорошего отпуска, ну а, как я, работающим – вменяемого начальства
Углерод. Химия углерода и его соединений
Углерод
Положение в периодической системе химических элементов
Углерод расположен в главной подгруппе IV группы (или в 14 группе в современной форме ПСХЭ) и во втором периоде периодической системы химических элементов Д.И. Менделеева.
Электронное строение углерода
Электронная конфигурация углерода в основном состоянии :
+6С 1s 2 2s 2 2p 2 1s 2s
2p
Электронная конфигурация углерода в возбужденном состоянии :
+6С * 1s 2 2s 1 2p 3 1s 2s
2p
Атом углерода содержит на внешнем энергетическом уровне 2 неспаренных электрона и 1 неподеленную электронную пару в основном энергетическом состоянии и 4 неспаренных электрона в возбужденном энергетическом состоянии.
Физические свойства
Углерод в природе существует в виде нескольких аллотропных модификаций: алмаз, графит, карбин, фуллерен.
Графит — мягкое вещество серо-стального цвета, с металлическим блеском. Хорошо проводит электрический ток. Жирный на ощупь.
Карбин — вещество, в составе которого атомы углерода находятся в sp-гибридизации. Состоит из цепочек и циклов, в которых атомы углерода соединены двойными и тройными связями. Карбин — мелкокристаллический порошок серого цвета.
[=C=C=C=C=C=C=]n или [–C≡C–C≡C–C≡C–]n
Фуллерен — это искусственно полученная модифицикация углерода. Молекулы фуллерена — выпуклые многогранники С60, С70 и др. Многогранники образованы пяти- и шестиугольниками, в вершинах которых расположены атомы углерода.
Фуллерены — черные вещества с металлическим блеском, обладающие свойствами полупроводников.
В природе углерод встречается как в виде простых веществ (алмаз, графит), так и в виде сложных соединений (органические вещества — нефть, природные газ, каменный уголь, карбонаты).
Качественные реакции
Видеоопыт взаимодействия карбоната кальция с соляной кислотой можно посмотреть здесь.
Качественная реакция на углекислый газ CO2 – помутнение известковой воды при пропускании через нее углекислого газа:
При дальнейшем пропускании углекислого газа осадок растворяется, т.к. карбонат кальция под действием избытка углекислого газа переходит в растворимый гидрокарбонат кальция:
Видеоопыт взаимодействия гидроксида кальция с углекислым газом (качественная реакция на углекислый газ) можно посмотреть здесь.
Соединения углерода
Наиболее типичные соединения углерода:
Степень окисления | Типичные соединения |
+4 | оксид углерода (IV) CO2 гидрокарбонаты MeHCO3 |
+2 | оксид углерода (II) СО муравьиная кислота HCOOH |
-4 | метан CH4 карбиды металлов (карбид алюминия Al4C3) бинарные соединения с неметаллами (карбид кремния SiC) |
Химические свойства
При нормальных условиях углерод существует, как правило, в виде атомных кристаллов (алмаз, графит), поэтому химическая активность углерода — невысокая.
1.1. Из галогенов углерод при комнатной температуре реагирует с фтором с образованием фторида углерода:
1.2. При сильном нагревании углерод реагирует с серой и кремнием с образованием бинарного соединения сероуглерода и карбида кремния соответственно:
C + 2S → CS2
C + Si → SiC
При взаимодействии углерода с водородом образуется метан. Реакция идет в присутствии катализатора (никель) и при нагревании:
1.4. С азотом углерод реагирует при действии электрического разряда, образуя дициан:
2С + N2 → N≡C–C≡N
1.5. В реакциях с активными металлами углерод проявляет свойства окислителя. При этом образуются карбиды:
2C + Ca → CaC2
при недостатке кислорода образуется угарный газ СО:
2C + O2 → 2CO
Алмаз горит при высоких температурах:
Горение алмаза в жидком кислороде:
Графит также горит:
Графит также горит, например, в жидком кислороде:
Графитовые стержни под напряжением:
2. Углерод взаимодействует со сложными веществами:
2.1. Раскаленный уголь взаимодействует с водяным паром с образованием угарного газа и водорода:
C 0 + H2 + O → C +2 O + H2 0
ZnO + C → Zn + CO
Также углерод восстанавливает железо из железной окалины:
4С + Fe3O4 → 3Fe + 4CO
При взаимодействии с оксидами активных металлов углерод образует карбиды.
3С + СаО → СаС2 + СО
2.3. Концентрированная серная кислота окисляет углерод при нагревании. При этом образуются оксид серы (IV), оксид углерода (IV) и вода:
2.4. Концентрированная азотная кислотой окисляет углерод также при нагревании. При этом образуются оксид азота (IV), оксид углерода (IV) и вода:
Карбиды
Ковалентные карбиды | Ионные карбиды | ||
Метаниды | Ацетилениды | Пропиниды | |
Это соединения углерода с неметаллами Например : Например : Например : Это соединения с металлами, при гидролизе которых образуется пропин Например : Mg2C3 | |||
Частицы связаны ковалентными связями и образуют атомные кристаллы. Поэтому ковалентные карбиды химически стойкие. Окисляются только сильными окислителями | Метаниды разлагаются водой или кислотами с образованием метана и гидроксида или соли: Например : Al4C3 + 12H2O → 4Al(OH)3 + 3CH4 | Ацетилениды разлагаются водой или кислотами с образованием ацетилена и гидроксида или соли: Например: СаС2+ 2Н2O → Са(OH)2 + С2Н2 |