с чем реагируют органические кислоты
Органические кислоты
Свойства органических кислот
Карбоновые кислоты
Химические свойства органических кислот определены строением функциональной группы (карбоксильная группа) и в растворах эти соединения легко диссоциируют с образованием ионов водорода. Поэтому для карбоновых кислот характерны все теже свойства, что и для минеральных кислот.
Известными примерами изображения карбоновых кислот могут следующие:
Уксусная кислота
Пропионовая или пропановая
Бутановая или масляная
Свойства органических кислот
— реагируют с металлами (образуется соль и водород)
— реакция с оксидами металлов (образуется соль и вода):
— реакция с солью (образуется другая соль и более слабая кислота):
— реакция со спиртами (образуется эфир):
— реакция с галогенами (с образованием галогеносодержащих кислот)
Получение карбоновых кислот
Получение карбоновых кислот из альдегидов, которые в свою очередь получаются окислением спиртов. Реакция протекает в так:
— это реакция окисления этилового спирта кислородом.
— это реакция окисления уксусного альдегида кислородом.
Получение карбоновых кислот гидролизом нитрилов: реакция проходит при действии на нитрилы водой. Вторым продуктом реакции является аммиак:
Наличие ионов водорода в растворах карбоновых кислот, также, как и других кислот, можно определить индикатором. Для карбоновых кислот, также, как и для минеральных, характерны реакции с оксидами металлов, основаниями, солями. При реакциях с солями образуются сложные эфиры.
Стеариновая кислота
Лимонная кислота
Лимонная кислота (химическая формула HOOCCH2)2C(OH)COOH) образует вытянутые бесцветные прозрачные кристаллы, растворимые в воде и в этиловом спирте. Соли лимонной кислоты называются цитратами. Чаще всего лимонную кислоту используют в качестве вкусовой добавки к кондитерским изделиям. При смешивании лимонной кислоты и пищевой соды (NaHCO3) выделяется углекислый газ (особенно при нагревании), который разрыхляет тесто.
Понятие кислота
В 1877 году химик из Швеции Сванте Аррениус предложил разделять ряд веществ на основания и кислоты. Согласно его теории, если при растворении в воде элемент высвобождает протон водорода Н+, его нужно относить к кислоте, а если гидроксид-иона (ОН-), то к основанию. Это правило позволило объяснить нейтрализацию веществ при взаимодействии друг с другом. Позже учёный дал уточнение, что сталкивание гидроксид-иона с ионом водорода образовывает воду H2O.
В начале двадцатого века британец Томас Лаури и датчанин Йоханнсен Брёнстед расширили определение. Они предложили относить к кислотам любую молекулу (ион), способную отдавать протон. Это позволило описать реакции, проходящие c водой, например, хлорид аммония.
В 1923 году американец Льюис на основании двух определений сформулировал своё правило. Его формулировка и стала использоваться повсеместно. По нему, кислота — это химическое соединение, принимающее электронную пару и образовывающее ковалентную связь. Основание же, напротив — соединение, способное избавляться от электронной пары.
Все кислоты в химии принято разделять на 2 типа:
Кроме этого, соединения могут быть одноосновными, двухосновными или трёхосновными. Все кислоты, за исключением кремниевой, отлично растворяются в воде. При взаимодействии с основаниями образуют соль, воду и кислотный остаток. Протекание реакции при соприкосновении с металлами происходит не всегда. Взаимодействие возможно лишь элементов, которые располагаются левее водорода. При этом кислотное соединение должно быть не только сильным, но и способным отдавать частицы водорода, которые выделяются во время взаимодействия.
Кислотные растворы могут изменять цвет. Так, лакмус становится красным. Соединение при взаимодействии имеет кислый вкус, появляется электрическая проводимость.
Если же в кислотный раствор добавить спирт, образуется сложный эфир. Все приведенные свойства характерны как для органических соединений, так и неорганических.
Особенности органического класса
Органическая химия изучает синтезирование углеводородов и их производство. Производные соединения углерода и водорода в молекулах относятся к карбоксильной группе (- COOH). Название веществ состоит из двух элементов: карбонита и гидроксила. Свойства же группы определяется смещением электронной плотности к карбонильному кислороду и образованной поляризацией связи O-H.
Другое название карбонатных кислот — органические. Их свойства определяются строением. Особенности группы из-за диссоциации с образованием частиц водорода в том, что её свойства совпадают с минеральными кислотами. Некоторые соединения, например, уксусная кислота (СН3СОOН) в своей молекуле имеют углеводородный радикал, поэтому возможны реакции, сопровождающиеся выбиванием водорода галогеном. Этот процесс приводит к повышению степени диссоциации, и кислота становится сильнее.
Из свойств органических соединений можно выделить:
Так как карбоновые кислоты распадаются на ионы, степень растворимости и достаточно большая температура кипения определяют межмолекулярные водородные связи. При этом с возрастанием молекулярной массы растворимость соединения уменьшается.
Карбоновые кислоты принято разделять и по природе углеводородного радикала: они бывают алифатическими, ароматическими и алициклическими. Если же в первом типе содержится более шести атомов углерода, соединение называют жирной кислотой. Это происходит из-за того, что в виде сложных эфиров они являются частью природных жиров и масел.
Ароматическая представляет собой бензойную и дикарбоновую кислоту, а алициклическая – циклопропан-карбоновую и циклогексанкарбоновую кислоты. Из структуры соединений выделяют радикалы (ацилы). Подписывают их используя суффикс – ил., например, бутрил, формил.
Таблица соединений
Существует две системы обозначений для карбоновых соединений. Их классификация допускает использование тривиального названия и по ИЮПАК. В то же время применение систематической номенклатуры считается более предпочтительной. Всё дело в том, что тривиальные имена не содержат сведений о составе и строении соединений, а некоторые сложные эфиры и соли вовсе не имеют сокращённых наименований.
В мире насчитывается более сотни различных видов органических кислот. Они входят в компоненты природных вод и связаны с жизнедеятельностью человека, животных и растений. Общую формулу для всей группы можно изобразить как R—COOH. Из наиболее популярных соединений можно выделить:
Тривиальное имя | Название по ИЮПАК | Содержащиеся соли и эфиры | Номер регистрации по CAS |
Адипиновая | Гександиовая | Адипинаты | 124-04-9 |
Акриловая | Пропеновая | Акрилаты | 79-10-7 |
Аспарагин | 4-амид-2-аминобутандиовая | 70-47-3 | |
Бензиловая | Гидроксидифенилуксусная | 76-93-7 | |
Валериановая | Пентановая | Валераты | 109-52-4 |
Ванилиновая | 4-гидрокси-3-метоксибензойная | 121-34-6 | |
Винная | 2,3-дигидроксибутандиовая | Тартраты | 133-37-9 |
Виноградная | DL-винная | 526-83-0 | |
Гистидин | 2-амино-3-(4-имидазолил)пропановая | 351-50-8 | |
Глицин | Аминоуксусная | 56-40-6 | |
Изоянтарная | Метилмалоновая | 516-05-2 | |
Камфорная | цис-1,2,2-триметилциклопентан-1,3-дикарбоновая кислота | 560-09-8 | |
Кофейная | 3-(3,4-дигидроксифенил)пропеновая | 331-39-5 | |
Лимонная | 2-гидрокси-1,2,3-пропантрикарбоновая | Цитраты | 77-92-9 |
Лимонно-яблочная | 2-гидрокси-2-метилбутандиовая | 597-44-4 | |
Мелиссовая | Триаконтановая | Мелиссаты | 506-50-3 |
Молочная | 2-гидроксипропановая | Лактаты | 50-21-5 |
Никотиновая | Пиридин-3-карбоновая | Никотинаты | 59-67-6 |
Оксаминовая | Моноамид щавелевая | 471-47-6 | |
Пенициллиновая | (2Z)-3-метокси-5-метил-4-оксо-2,5-гексадиеновая | 90-65-3 | |
Пробковая | Октандиовая | Субераты | 505-48-6 |
Салициловая | 2-гидроксибензойная | Салицилаты | 69-72-7 |
Травматиновая | 2-додецендиовая | 64-02-36-4 | |
Уксусная | Этановая | Ацетаты | 64-19-7 |
Фенантровая | 1-фенантренкарбоновая | 27875-89-4 | |
Фолиевая | 59-30-3 | ||
Яблочная | Малаты | 6915-15-7 |
Отдельно нужно выделить муравьиную кислоту (HCOOH). Это одноосновное соединение. В природе она вырабатывается у пчёл, муравьёв, содержится в крапиве и хвое. Проявляет восстановительные свойства. Эта кислота очень востребована как антибактериальное средство.
Происхождение и получение
Получение HOOC-соединений связано с окислением спиртов. Протекающую реакцию окисления этилового спирта можно записать как CH3 – CH2 – OH → CH3 – C = O (-OH) + H2O. Окисление же уксусного альдегида выглядит следующим образом: CH3 – C = O (H) → CH3 – C =O (-OH). Образование возможно и гидролизом нитрилов. Побочным продуктом является аммиак: CH3 – C = N + H2O → CH3 – C = O (-OH) + NH3.
Карбоновую кислоту можно создать гидролизом сложного эфира. В результате реакции получается спирт. Что интересно, если в реакции использовать щёлочь, продуктом станет соль. Но если её поместить в минеральную кислоту, получится органическая. Реакция имеет вид: СH3 – C = O (-CH3) + H2O → CH3 – C = O (-OH) – CH3OH. Этот способ применяется для получения высших соединений: пальмитинового ( C 16 H 32 O 2), стеаринового ( c17h35cooh), олеинового ( c17h33cooh). При этом в воде они не растворяются.
Всего же можно выделить следующие способы:
Химия, Биология, подготовка к ГИА и ЕГЭ
Органические кислоты
Карбоновые кислоты
Классификация органических кислот
Здесь все просто — деление по числу карбоксильных групп и по составу радикала.
Номенклатура
Номенклатура карбоновых кислот достаточно проста:
Изомерия органических кислот
Физические свойства:
Химические свойства карбоновых кислот
Карбоксильная группа устроена таким образом, что молекула достаточно легко может отщеплять водород — проявлять свойства кислоты. Кислород карбонильной группы тянет электронную плотность на себя, поэтому связь O-H в гидроксильной группе поляризуется, и H становится более подвижным.
Важно понимать, что органические кислоты НАМНОГО слабее неорганических (но: угольная H2CO3 и кремниевая H2SiO3 — слабее органических).
Соответственно, органические кислоты реагируют с
CH3COOH + CH3OH = CH3COOCH3 + H2O
Получение кислот
Карбоновые кислоты
Классификация карбоновых кислот
Высшие карбоновые кислоты называют жирными кислотами. Более подробно мы изучим их теме, посвященной жирам, в состав которых они входят.
Номенклатура и изомерия карбоновых кислот
Названия карбоновых кислот формируются путем добавления суффикса «овая» к названию алкана с соответствующим числом атомов углерода и слова кислота: метановая кислота, этановая кислота, пропановая кислота, и т.д.
Для предельных карбоновых кислот характерна структурная изомерия: углеродного скелета, межклассовая изомерия со сложными эфирами.
Получение карбоновых кислот
При повышенной температуре и в присутствии катализатора становится возможным неполное окисление алканов, в результате которого образуются кислоты.
При реакции спиртов с сильными окислителями, такими как подкисленный раствор перманганата калия, спирты окисляются до соответствующих кислот.
Обратите особое внимание, что при написании реакции с аммиачным раствором серебра в полном виде, правильнее будет указать не кислоту, а ее аммиачную соль. Это связано с тем, что выделяющийся аммиак, который обладает основными свойствами, реагирует с кислотой с образованием соли.
При дальнейшей обработке формиата серной кислотой образуется муравьиная кислота.
Специфичность синтеза уксусной кислоты заключается в реакции угарного газа с метанолом, в результате которой она образуется.
Также уксусную кислоту можно получить другим путем: сначала провести реакцию Кучерова, в ходе которой образуется уксусный альдегид. Окислить его до уксусной кислоты можно аммиачным раствором оксида серебра или гидроксидом меди II.
Химические свойства карбоновых кислот
Для карбоновых кислот не характерны реакции присоединения. Карбоновые кислоты обладают более выраженными кислотными свойствами, чем спирты.
Карбоновые кислоты вступают в реакции с металлами, которые способны вытеснить водород (стоят левее водорода в ряду напряжений металлов) из кислоты. Реагируют также с основаниями, с солями более слабых кислот, например, угольной кислоты.
Перераспределение электронной плотности в молекулах этих кислот для лучшего запоминания лучше увидеть наглядно. Это перераспределение обусловлено большей электроотрицательностью хлора, который притягивает электронную плотность.
Муравьиная кислота отличается от своих гомологов. За счет наличия у нее альдегидной группы, она, единственная из карбоновых кислот, способна вступать в реакцию серебряного зеркала.
В такой реакции идет ее окисление до нестойкой угольной кислоты, которая распадается на углекислый газ и воду.
При нагревании и в присутствии серной кислоты (водоотнимающего компонента) муравьиная кислота распадается на воду и угарный газ.
Сложные эфиры
Ангидриды
Хлорангидриды карбоновых кислот образуются в реакции карбоновых кислот с хлоридом фосфора V.
Следующая реакция не имеет отношения к ангидридам, однако (из-за их схожести) вы увидите ее здесь для наилучшего запоминания. Это реакция галогенирования гидроксикислот, в результате которой гидроксогруппа в радикале меняется на атом галогена.
Непредельные карбоновые кислоты
Распределение электронной плотности в молекулах творит чудеса: иногда реакции идут против правила Марковникова. Так происходит в непредельной акриловой кислоте.
© Беллевич Юрий Сергеевич 2018-2021
Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.
С чем реагируют органические кислоты
Если в углеводородном радикале карбоновых кислот атом (атомы) водорода замещен на другие функциональные группы, то такие кислоты называются гетерофункционапьными. Среди них различают галогенкарбоновые (например, CH2Cl—COOH), нитро-кислоты (например, NO2—С6Н4СООН), аминокислоты, оксикислоты (например, молочная СН3—СН(ОН)—СООН) и др.
Карбоновые кислоты с числом атомов углерода выше 6 называют высшими (жирными) кислотами. Название «жирные» эти кислоты получили потому, что большинство из них могут быть выделены из жиров.
В свою очередь, группа ОН «гасит» положительный заряд на группе СО, которая из-за этого теряет способность к реакциям присоединения, характерным для карбонильных соединений.
Углеводородную цепь нумеруют начиная с атома углерода карбоксильной группы, например:
Часто карбоксильную группу рассматривают как заместитель в молекуле углеводорода. При этом в названии употребляют словосочетание «карбоновая кислота» и в нумерацию атомов углерода цепи атом углерода карбоксильной группы не включают:
Гептадецен-8-карбоновая (олеиновая) кислота
Названия дикарбоновых кислот производят от названия соответствующего углеводорода с добавлением суффикса «диовая» и слова «кислота». Например, этандиовая (щавелевая) кислота (НООС-СООН).
При рассмотрении карбоксильной группы как заместителя, название двухосновной кислоты производят от названия углеводородного радикала с добавлением словосочетания «дикарбоновая кислота». Например, малоновую кислоту (НООС-СН2-СООН) называют метандикарбоновой кислотой.
1. Изомерия углеродной цепи. Она начинается с бутановой кислоты (С3Н7СООН), которая существует в виде двух изомеров:
2. Изомерия положения кратной связи, например:
СН2=СН—СН2—СООН СН3—СН=СН—СООН
Бутен-3-овая кислота Бутен-2-овая кислота
(винилуксусная кислота) (кретоновая кислота)
3. Цис-транс- изомерия, например:
4. Межклассовая изомерия: например, масляной кислоте (СН3—СН2—СН2—СООН) изомерны метиловый эфир пропановой кислоты (СН3—СН2—СО—О—СН3) и этиловый эфир уксусной кислоты (СН3—СО—О—СН2—СН3).
5. У гетерофункциональных кислот имеется изомерия, связанная с положением функциональных групп, например, существуют три изомера хлормасляной кислоты:
СН3—СН2—СНСl—СООН СН3—СНСl—СН2—СООН
2-хлорбутановая кислота 3-хлорбутановая кислота
Для гетерофункциональных кислот возможна также оптическая изомерия.
Кислоты, содержащие 1-3 углеродных атома, неограниченно смешиваются с водой. С дальнейшим ростом углеводородного радикала растворимость монокарбоновых кислот уменьшается, твердые высшие жирные кислоты в воде не растворяются.
В жидком состоянии и в неводных растворах молекулы монокарбоновых кислот димеризуются в результате образования между ними водородных связей. Это объясняет гораздо более высокие температуры кипения карбоновых кислот по сравнению со спиртами и альдегидами с тем же числом атомов углерода; температуры плавления и кипения с ростом молекулярной массы возрастают.