С чем взаимодействует железо
С чем взаимодействует железо
В химическом отношении железо, кобальт и никель относятся к металлам средней активности. В электрохимическом ряду напряжений металлов они располагаются левее водорода, между цинком и оловом. Чистые металлы при комнатной температуре довольно устойчивы, их активность сильно увеличивается при нагревании, особенно если они находятся в мелкодисперсном состоянии. Наличие примесей значительно снижает устойчивость металлов.
При нагревании на воздухе выше 200 °С железо взаимодействует с кислородом, образуя оксиды нестехиометрического состава FexO, мелкодисперсное железо сгорает с образованием смешанного оксида железа (II, III):
Кобальт и никель реагируют с кислородом при более высоких температурах, образуя в основном оксиды двухвалентных элементов, имеющие переменный состав в зависимости от условий получения:
С галогенами металлы реагируют, образуя галогениды :
Металлы довольно устойчивы к действию фтора, никель не разрушается фтором даже при температуре красного каления.
При взаимодействии с азотом при невысокой температуре железо, кобальт и никель образуют нитриды различного состава, например:
Взаимодействие с серой экзотермично и начинается при слабом нагревании, в результате образуются нестехиометрические соединения, которые имеют состав, близкий к ЭS:
С водородом металлы триады железа не образуют стехиометрических соединений, но они поглощают водород в значительных количествах.
С углеродом, бором, кремнием, фосфором также при нагревании образуют соединения нестехиометрического состава, например:
В воде в присутствии кислорода железо медленно окисляется кислородом воздуха (корродирует):
При температуре 700–900 °С раскаленное железо реагирует с водяным паром:
Кобальт и никель с водой не взаимодействуют.
Железо реагирует с разбавленными растворами соляной и серной кислот, образуя соли железа (II):
с разбавленной азотной кислотой образует нитрат железа (III) и продукт восстановления азотной кислоты, состав которого зависит от концентрации кислоты, например:
При обычных условиях концентрированные (до 70 мас. %) серная и азотная кислоты пассивируют железо. При нагревании возможно взаимодействие с образованием солей железа (III):
По отношению к кислотам кобальт и никель устойчивее железа, медленно реагируют с неокисляющими кислотами с образованием солей кобальта (II) и никеля (II) и водорода. С разбавленной азотной кислотой образуют нитраты кобальта (II) и никеля (II) и продукт восстановления азотной кислоты, состав которого зависит от концентрации кислоты:
При обычных условиях концентрированные серная и азотная кислоты пассивируют кобальт и никель, хотя в меньшей степени, чем железо. При нагревании возможно взаимодействие с образованием солей железа двухвалентных металлов:
Разбавленные растворы щелочей на металлы триады железа не действуют. Возможно только взаимодействие железа с щелочными расплавами сильных окислителей:
Для кобальта и никеля взаимодействие с расплавами щелочей не характерно.
Железо, кобальт и никель вытесняют металлы, которые расположены правее в электрохимическом ряду напряжений их растворов солей:
Для металлов триады железа характерно образование карбонилов, в которых железо, кобальт и никель имеют степень окисления, равную 0. Карбонилы железа и никеля получаются при обычном давлении и температуре 20–60 °С:
Карбонилы никеля образуются при давлении 2·10 7 – 3·10 7 Па и температуре 150–200 °С:
Реакции, взаимодействие железа. Уравнения реакции железа с веществами
Реакции, взаимодействие железа. Уравнения реакции железа с веществами.
Железо реагирует, взаимодействует с неметаллами, оксидами, кислотами, основаниями, солями и пр. веществами.
Реакции, взаимодействие железа с неметаллами. Уравнения реакции:
1. Реакция взаимодействия железа и серы :
Fe + S → FeS (t = 600-950 °C),
Fe + 2S → FeS2 (t серы происходит с образованием в первом случае – сульфида железа (II), во втором – дисульфида железа (II).
2. Реакция взаимодействия железа и красного фосфора:
Fe + 3P → Fe3P (t = 600-700 °C).
3. Реакция взаимодействия железа и селена :
Fe + Se → FeSe (t = 600-950 °C).
Реакция взаимодействия железа и селена происходит с образованием селенида железа.
4. Реакция взаимодействия железа и кремния :
2Si + Fe → FeSi2 (t o ).
Реакция взаимодействия железа и кремния происходит с образованием силицида железа. Реакция протекает при сплавлении реакционной смеси.
5. Реакция взаимодействия железа, кремния и кислорода:
2Fe + 2Si + 3O2 → 2FeSiO3 (t = 1100-1300 °C).
Реакция взаимодействия железа, кремния и кислорода происходит в первом случае – с образованием ортосиликата железа, во втором – метасиликата железа.
6. Реакция взаимодействия железа и кислорода:
7. Реакция взаимодействия железа и углерода :
Реакция взаимодействия железа и углерода происходит с образованием карбида железа.
8. Реакция взаимодействия железа и фтора :
Реакция взаимодействия железа и фтора происходит с образованием фторида железа.
9. Реакция взаимодействия железа и хлора:
Реакция взаимодействия железа и хлора происходит с образованием хлорида железа.
10. Реакция взаимодействия железа и брома:
Реакция взаимодействия железа и брома происходит с образованием бромида железа.
11. Реакция взаимодействия железа и йода :
Реакция взаимодействия железа и йода происходит с образованием йодида железа.
12. Реакция взаимодействия железа и бора:
Реакция взаимодействия железа и бора происходит с образованием борида железа.
Реакции, взаимодействие железа с оксидами. Уравнения реакции:
1. Реакция взаимодействия железа и воды:
2. Реакция взаимодействия железа, воды и кислорода:
Реакция взаимодействия железа, воды и кислорода происходит с образованием гидроксида железа. Реакция протекает медленно и представляет собой коррозию железа.
3. Реакция взаимодействия железа, воды и пероксида калия:
4. Реакция взаимодействия железа и оксида железа (II, III):
Реакция взаимодействия железа и оксида железа (II, III) происходит с образованием оксида железа (II).
5. Реакция взаимодействия железа и оксида железа (III):
Реакция взаимодействия железа и оксида железа (III) происходит с образованием оксида железа (II).
6. Реакция взаимодействия железа и оксида углерода (II):
Реакция взаимодействия железа и оксида углерода (II) происходит с образованием пентакарбонилжелеза. В ходе реакции железо нагревается в струе СО.
7. Реакция взаимодействия железа и оксида серы:
Реакция взаимодействия железа и оксида серы происходит с образованием сульфита железа и тиосульфата железа. Реакция медленно протекает при комнатной температуре.
Реакции, взаимодействие железа с солями. Уравнения реакции:
1. Реакция взаимодействия железа и нитрата меди:
Реакция взаимодействия нитрата меди и железа происходит с образованием нитрата железа и меди.
2. Реакция взаимодействия железа и нитрата серебра:
3. Реакция взаимодействия железа и сульфата меди:
Реакция взаимодействия сульфата меди и железа происходит с образованием сульфата железа и меди.
4. Реакция взаимодействия железа и хлорида меди:
Реакция взаимодействия хлорида меди и железа происходит с образованием меди и хлорида железа.
5. Реакция взаимодействия железа и хлорида железа (III):
Реакция взаимодействия хлорида железа (III) и железа происходит с образованием хлорида железа (II). Реакция протекает при кипении в тетрагидрофуране.
Реакции, взаимодействие железа с кислотами. Уравнения реакции:
1. Реакция взаимодействия железа и азотной кислоты:
Реакция взаимодействия железа и азотной кислоты происходит с образованием нитрата железа, оксида азота и воды. В ходе реакции используется концентрированная азотная кислота.
2. Реакция взаимодействия железа и ортофосфорной кислоты:
Реакция взаимодействия железа и ортофосфорной кислоты происходит с образованием гидроортофосфата железа, ортофосфата железа и водорода. В ходе реакции используется разбавленный раствор ортофосфорной кислоты.
Аналогичные реакции протекают и с другими минеральными кислотами.
Реакции, взаимодействие железа с основаниями. Уравнения реакции:
1. Реакция взаимодействия железа, гидроксида натрия и воды:
Реакция взаимодействия железа, гидроксида натрия и воды происходит с образованием тетрагидроксоферрата натрия и водорода. Реакция протекает при кипении раствора в атмосфере азота.
2. Реакция электролиза железа, водного раствора гидроксида калия:
Реакция взаимодействия железа и водного раствора гидроксида калия происходит с образованием феррата калия и водорода.
Реакции, взаимодействие железа с водородсодержащими соединениями. Уравнения реакции:
1. Реакция взаимодействия железа и бромоводорода:
Fe + 2HBr → FeBr2 + H2 (t = 800-900 °C).
Реакция взаимодействия железа и бромоводорода происходит с образованием бромида железа и водорода.
2. Реакция взаимодействия железа и фтороводорода:
Реакция взаимодействия железа и фтороводорода происходит с образованием фторида железа и водорода. В ходе реакции используется разбавленный раствор фтороводорода.
Хром, железо и медь
Твердый металл голубовато-белого цвета. Этимология слова «хром» берет начало от греч. χρῶμα — цвет, что связано с большим разнообразием цветов соединений хрома. Массовая доля этого элемента в земной коре составляет 0.02% по массе.
В промышленности хром получают прокаливанием хромистого железняка с углеродом. Также применяют алюминотермию для вытеснения хрома из его оксида.
Протекает в раскаленном состоянии.
С холодными концентрированными серной и азотной кислотой реакция не идет. Она начинается только при нагревании.
Хром способен вытеснить из солей металлы, стоящие в ряду напряжений правее него.
Соединения хрома (II)
Гидроксид хрома (II), как нерастворимый гидроксид, легко разлагается при нагревании на соответствующий оксид и воду, реагирует с кислотами, кислотными оксидами.
Соединения хрома (III)
Это наиболее устойчивые соединения, которые носят амфотерный характер. К ним относятся оксид хрома (III) гидроксид хрома (III).
H2O + NaOH + Cr2O3 → Na3[Cr(OH)6] (в растворе, гексагидроксохромат натрия)
Cr2O3 + 2NaOH → (t°) 2NaCrO2 + H2O (прокаливание, хромит натрия)
Cr2O3 + HCl = CrCl3 + H2O (сохраняем степень окисления Cr +3 )
Оксид хрома (III) реагирует с более активными металлами (например, при алюминотермии).
При окислении соединение хрома (III) получают соединения хрома (VI) (в щелочной среде).
Соединения хрома (VI)
Хроматы переходят в дихроматы с увеличением кислотности среды (часто в реакциях с кислотами). Цвет раствора меняется с желтого на оранжевый.
Разложение дихромата аммония выглядит очень эффектно и носит название «вулканчик» 🙂
В степени окисления +6 соединения хрома проявляют выраженные окислительные свойства.
Железо
Является одним из самых распространенных элементов в земной коре (после алюминия), составляет 4,65% ее массы.
Для железа характерны две основные степени окисления +2, +3, +6.
Основными сплавами железа являются чугун и сталь. В стали содержание углерода менее 2%, меньше содержится P, Mn, Si, S. Чугун отличается бо́льшим содержанием углерода (2-6%), содержит больше P, Mn, Si, S.
Fe + S = FeS (t > 700°C)
Качественной реакцией на ионы Fe 2+ также является взаимодействие с щелочью (гидроксидом натрия). В результате выпадает осадок зеленого цвета.
Соединения железа (III) проявляют амфотерные свойства. Оксид и гидроксид железа (III) реагирует и с кислотами, и с щелочами.
Fe(OH)3 + KOH = K3[Fe(OH)6] (гексагидроксоферрат калия)
При сплавлении комплексные соли не образуются из-за испарения воды.
Качественной реакцией на ионы Fe 3+ является взаимодействие с желтой кровяной солью K4[Fe(CN)6]. В результате реакции образуется берлинская лазурь (прусский синий).
Реакция хлорида железа (III) с роданидом калия также является качественной, в результате нее образуется характерный раствор ярко красного цвета.
Ферраты можно получить в ходе электролизом щелочи на железном аноде, а также действием хлора на взвесь Fe(OH)3 в щелочи.
Один из первых металлов, освоенных человеком вследствие низкой температуры плавления и доступности получения руды.
Основные степени окисления меди +1, +2.
Пирометаллургический метод получения основан на получении меди путем обжига халькопирита, который идет в несколько этапов.
Медь, как малоактивный металл, выделяется при электролизе солей в водном растворе на катоде.
Во влажном воздухе окисляется с образованием основного карбоната меди.
При нагревании реагирует с кислородом, селеном, серой, при комнатной температуре с: хлором, бромом и йодом.
4Cu + O2 = (t) 2Cu2O (при недостатке кислорода)
2Cu + O2 = (t) 2CuO (в избытке кислорода)
Медь способна восстанавливать неметаллы из их оксидов.
Соединения меди I
В степени окисления +1 медь проявляет основные свойства. Соединения меди (I) можно получить путем восстановления соединений меди (II).
Оксид меди (I) можно восстановить до меди различными восстановителями: угарным газом, алюминием (алюминотермией), водородом.
Оксид меди (I) окисляется кислородом до оксида меди (II).
Оксид меди (I) вступает в реакции с кислотами.
Гидроксид меди CuOH неустойчив и быстро разлагается на соответствующий оксид и воду.
Соединения меди (II)
Степень окисления +2 является наиболее стабильной для меди. В этой степени окисления у меди есть оксид CuO и гидроксид Cu(OH)2. Данные соединения проявляют преимущественно основные свойства.
Оксид меди (II) получают в реакциях термического разложения гидроксида меди (II), реакцией избытка кислорода с медью при нагревании.
При нагревании гидроксид меди (II), как нерастворимое основание, легко разлагается на соответствующий оксид и воду.
Как сказано выше, гидроксид меди (II) носит преимущественно основный характер, однако способен проявлять и амфотерные свойства. В растворе концентрированной щелочи он растворяется, образуя гидроксокомлпекс.
© Беллевич Юрий Сергеевич 2018-2021
Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.
Железо — общая характеристика элемента, химические свойства железа и его соединений
Желе́зо — элемент побочной подгруппы восьмой группы четвёртого периода периодической системы химических элементов Д. И. Менделеева с атомным номером 26. Обозначается символом Fe (лат. Ferrum). Один из самых распространённых в земной коре металлов (второе место после алюминия). Металл средней активности, восстановитель.
Основные степени окисления — +2, +3
Простое вещество железо — ковкий металл серебристо-белого цвета с высокой химической реакционной способностью: железо быстро корродирует при высоких температурах или при высокой влажности на воздухе. В чистом кислороде железо горит, а в мелкодисперсном состоянии самовозгорается и на воздухе.
Химические свойства простого вещества — железа:
Ржавление и горение в кислороде
1) На воздухе железо легко окисляется в присутствии влаги (ржавление):
Накалённая железная проволока горит в кислороде, образуя окалину — оксид железа (II, III):
2) При высокой температуре (700–900°C) железо реагирует с парами воды:
3) Железо реагирует с неметаллами при нагревании:
Fe + S – t° → FeS (600 °С)
4) В ряду напряжений стоит левее водорода, реагирует с разбавленными кислотами НСl и Н2SO4, при этом образуются соли железа(II) и выделяется водород:
Fe + 2HCl → FeCl2 + H2 (реакции проводятся без доступа воздуха, иначе Fe +2 постепенно переводится кислородом в Fe +3 )
В концентрированных кислотах–окислителях железо растворяется только при нагревании, оно сразу переходит в катион Fе 3+ :
(на холоде концентрированные азотная и серная кислоты пассивируют железо).
Железный гвоздь, погруженный в голубоватый раствор медного купороса, постепенно покрывается налетом красной металлической меди
5) Железо вытесняет металлы, стоящие правее его в ряду напряжений из растворов их солей.
Амфотерность железа проявляется только в концентрированных щелочах при кипячении:
и образуется осадок тетрагидроксоферрата(II) натрия.
Техническое железо — сплавы железа с углеродом: чугун содержит 2,06-6,67 % С, сталь 0,02-2,06 % С, часто присутствуют другие естественные примеси (S, Р, Si) и вводимые искусственно специальные добавки (Мn, Ni, Сr), что придает сплавам железа технически полезные свойства — твердость, термическую и коррозионную стойкость, ковкость и др.
Доменный процесс производства чугуна
Доменный процесс производства чугуна составляют следующие стадии:
а) подготовка (обжиг) сульфидных и карбонатных руд — перевод в оксидную руду:
б) сжигание кокса при горячем дутье:
в) восстановление оксидной руды угарным газом СО последовательно:
г) науглероживание железа (до 6,67 % С) и расплавление чугуна:
В чугуне всегда в виде зерен присутствуют цементит Fe2С и графит.
Производство стали
Передел чугуна в сталь проводится в специальных печах (конвертерных, мартеновских, электрических), отличающихся способом обогрева; температура процесса 1700-2000 °С. Продувание воздуха, обогащенного кислородом, приводит к выгоранию из чугуна избыточного углерода, а также серы, фосфора и кремния в виде оксидов. При этом оксиды либо улавливаются в виде отходящих газов (СО2, SО2), либо связываются в легко отделяемый шлак — смесь Са3(РO4)2 и СаSiO3. Для получения специальных сталей в печь вводят легирующие добавки других металлов.
Получение чистого железа в промышленности — электролиз раствора солей железа, например:
(существуют и другие специальные методы, в том числе восстановление оксидов железа водородом).
Чистое железо применяется в производстве специальных сплавов, при изготовлении сердечников электромагнитов и трансформаторов, чугун — в производстве литья и стали, сталь — как конструкционный и инструментальный материалы, в том числе износо-, жаро- и коррозионно-стойкие.
FеО + Н2 =Н2O + Fе (особо чистое) (350°С)
FеО + С(кокс) = Fе + СО (выше 1000 °С)
FеО + СО = Fе + СO2 (900°С)
Получение в лаборатории: термическое разложение соединений железа (II) без доступа воздуха:
FеСОз = FеО + СO2 (490-550 °С)
2(Fe II Fe2 III )O4 = 6FеО + O2 (выше 1538 °С)
(Fe II Fe2 III )O4 + 4Н2 = 4Н2O + 3Fе (особо чистое, 1000 °С)
Получение: сгорание железа (см.) на воздухе.
В природе — оксидная руда железа магнетит.
Оксид железа(III) Fе2О3. Амфотерный оксид с преобладанием основных свойств. Красно-коричневый, имеет ионное строение (Fе 3+ )2(O 2- )3. Термически устойчив до высоких температур. Не образуется при сгорании железа на воздухе. Не реагирует с водой, из раствора выпадает бурый аморфный гидрат Fе2O3 nН2О. Медленно реагирует с кислотами и щелочами. Восстанавливается монооксидом углерода, расплавленным железом. Сплавляется с оксидами других металлов и образует двойные оксиды — шпинели (технические продукты называются ферритами). Применяется как сырье при выплавке чугуна в доменном процессе, катализатор в производстве аммиака, компонент керамики, цветных цементов и минеральных красок, при термитной сварке стальных конструкций, как носитель звука и изображения на магнитных лентах, как полирующее средство для стали и стекла.
Уравнения важнейших реакций:
Получение в лаборатории — термическое разложение солей железа (III) на воздухе:
В природе — оксидные руды железа гематит Fе2O3 и лимонит Fе2O3 nН2O
Гидроксид железа (II) Fе(ОН)2. Амфотерный гидроксид с преобладанием основных свойств. Белый (иногда с зеленоватым оттенком), связи Fе — ОН преимущественно ковалентные. Термически неустойчив. Легко окисляется на воздухе, особенно во влажном состоянии (темнеет). Нерастворим в воде. Реагирует с разбавленными кислотами, концентрированными щелочами. Типичный восстановитель. Промежуточный продукт при ржавлении железа. Применяется в изготовлении активной массы железоникелевых аккумуляторов.
Уравнения важнейших реакций:
Получение: осаждение из раствора щелочами или гидратом аммиака в инертной атмосфере:
Метагидроксид железа FеО(ОН). Амфотерный гидроксид с преобладанием основных свойств. Светло-коричневый, связи Fе — О и Fе — ОН преимущественно ковалентные. При нагревании разлагается без плавления. Нерастворим в воде. Осаждается из раствора в виде бурого аморфного полигидрата Fе2O3 nН2O, который при выдерживании под разбавленным щелочным раствором или при высушивании переходит в FеО(ОН). Реагирует с кислотами, твердыми щелочами. Слабый окислитель и восстановитель. Спекается с Fе(ОН)2. Промежуточный продукт при ржавлении железа. Применяется как основа желтых минеральных красок и эмалей, поглотитель отходящих газов, катализатор в органическом синтезе.
Соединение состава Fе(ОН)3 не известно (не получено).
Уравнения важнейших реакций:
2FеО(ОН) + ЗН2 = 4Н2O+ 2Fе (особо чистое, 500—600 °С)
Получение: осаждение из раствора солей железа(Ш) гидрата Fе2О3 nН2O и его частичное обезвоживание (см. выше).
В природе — оксидная руда железа лимонит Fе2O3 nН2О и минерал гётит FеО(ОН).
Феррат калия К2FеО4. Оксосоль. Красно-фиолетовый, разлагается при сильном нагревании. Хорошо растворим в концентрированном растворе КОН, реагирует с кипящей водой, неустойчив в кислотной среде. Сильный окислитель.
Качественная реакция — образование красного осадка феррата бария. Применяется в синтезе ферритов — промышленно важных двойных оксидов железа (III) и других металлов.
Уравнения важнейших реакций:
FеО4 2- + Ва 2+ = ВаFеO4 (красн.)↓ (в конц. КОН)
Получение: образуется при окислении соединений железа, например метагидроксида FеО(ОН), бромной водой, а также при действии сильных окислителей (при спекании) на железо
и электролизе в растворе:
(феррат калия образуется на аноде).
Обнаружение ионов Fе 2+ и Fе 3+ в водном растворе проводят с помощью реактивов К3[Fе(СN)6] и К4[Fе(СN)6] соответственно; в обоих случаях выпадает синий продукт одинакового состава и строения, КFе III [Fе II (СN)6]. В лаборатории этот осадок называют берлинская лазурь, или турнбуллева синь:
Fе 2+ + К + + [Fе(СN)6] 3- = КFе III [Fе II (СN) 6]↓
Fе 3+ + К + + [Fе(СN)6] 4- = КFе III [Fе II (СN) 6]↓
Химические названия исходных реактивов и продукта реакций:
К3Fе III [Fе(СN) 6]- гексацианоферрат (III) калия
К4Fе III [Fе (СN) 6]- гексацианоферрат (II) калия
КFе III [Fе II (СN) 6]- гексацианоферрат (II) железа (Ш) калия
Fе 3+ + 6NСS — = [Fе(NСS)6] 3-
Этим реактивом (например, в виде соли КNСS) можно обнаружить даже следы железа (III) в водопроводной воде, если она проходит через железные трубы, покрытые изнутри ржавчиной.