С помощью чего можно снизить влияние рассеянного излучения
С помощью чего можно снизить влияние рассеянного излучения
При работе на повышенных напряжениях, как и при рентгенографии на обычных напряжениях, необходимо использовать все известные способы борьбы с рассеянным рентгеновским излучением.
Количество рассеянных рентгеновых лучей уменьшается с уменьшением поля облучения, что достигается ограничением в поперечнике рабочего пучка рентгеновых лучей. С уменьшением поля облучения, в свою очередь, улучшается разрешающая способность рентгеновского изображения, т. е. уменьшается минимальный размер определяемой глазом детали. Для ограничения в поперечнике рабочего пучка рентгеновых лучей далеко еще недостаточно используются сменные диафрагмы или тубусы.
Для уменьшения количества рассеянных рентгеновых лучей следует применять, где это возможно, компрессию. При компрессии уменьшается толщина исследуемого объекта и, само собой разумеется, становится меньше центров образования рассеянного рентгеновского излучения. Для компрессии используются специальные компрессионные пояса, которые входят в комплект рентгенодиагностических аппаратов, но они недостаточно часто используются.
Количество рассеянного излучения уменьшается с увеличением расстояния между рентгеновской трубкой и пленкой. При увеличении этого расстояния и соответствующем диафрагмировании получается менее расходящийся в стороны рабочий пучок рентгеновых лучей. При увеличении расстояния между рентгеновской трубкой и пленкой необходимо уменьшать поле облучения до минимально возможных размеров. При этом не должна «срезаться» исследуемая область.
С этой целью в последних конструкциях рентгенодиагностических аппаратов предусмотрен пирамидальный тубус со световым центратором. С его помощью достигается возможность не только ограничить снимаемый участок для повышения качества рентгеновского изображения, но и исключается излишнее облучение тех частей тела человека, которые не подлежат рентгенографии.
Для уменьшения количества рассеянных рентгеновых лучей исследуемую деталь объекта следует максимально приближать к рентгеновской пленке. Это не относится к рентгенографии с непосредственным увеличением рентгеновского изображения. При рентгенографии с непосредственным увеличением изображения рассеянное изучение практически не достигает рентгеновской пленки.
Мешочки с песком, используемые для фиксации исследуемого объекта, надо располагать дальше от кассеты, так как песок является хорошей средой для образования рассеянного рентгеновского излучения.
При рентгенографии, производимой на столе без использования отсеивающей решетки, под кассету или конверт с пленкой следует подкладывать лист просвинцованной резины возможно больших размеров.
Для поглощения рассеянных рентгеновых лучей применяются отсеивающие рентгеновские решетки, которые поглощают эти лучи при выходе их из тела человека.
Освоение техники производства рентгеновских снимков при повышенных напряжениях на рентгеновской трубке является именно тем путем, который приближает нас к идеальному рентгеновскому снимку, т. е. такому снимку, на котором хорошо видны в деталях и костная, и мягкая ткани.
С помощью чего можно снизить влияние рассеянного излучения
Детекторы излучения, применяемые в мониторах фракции выброса сердца разнообразны. В макетах приборов и в серийных образцах применялись такие детекторы, как NaJ(Tl)+ФЭУ, CdTl, CdJ2, CsJ(Tl)+фотодиод [1,2,3,4].
В основной массе эти детекторы имеют одинаковую эффективность к излучению Tc99m, т.е. энергии гамма-излучения равной 140кэв. Однако детекторы разнятся не только в цене и доступности, но и в таком важном параметре как энергетическое разрешение. Можно утверждать, что до сих пор наилучшим энергетическим разрешением обладает NaJ. То есть при использовании такого детектора можно быть наиболее уверенным, что излучение, излучаемое структурой человеческого организма, в нашем случае сердцем, принадлежит ему, а не какой либо части тела внесшего вклад своим рассеянным излучением.
Еще в работах Тер-Апогосяна [4], было показано, что отклонение гамма-кванта Nc99m на 90 градусов уменьшает его энергию всего со 140 до 120 кэв.
Так как сердце лежит в углублении между легкими, которые также наполнены радиоактивной кровью, а также при мониторинге дневной активности человека сердце может перемещаться внутри грудной клетки, мы поставили себе задачу: насколько влияет рассеянное излучение от Nc99m на показатели фракции выброса используя физическую модель желудочка сердца.
Модель состоит двигателя и механизма управляющего стеклоочистителем автомобиля, имеющего рычаг совершающий возвратно-поступательное движение.
Только несколько презервативов, вложенных один в другой, давали такую же упругость как детский шарик. Поэтому мы остановились на последнем варианте. Мотор модели питался от источника постоянного тока, где меняя напряжение можно было менять частоту. Между трубкой идущей от сильфона и моделью левого желудочка находилась резиновая трубка, через которую можно вводить Tc99m и жидкость для установления конечного систолического объема при нажатом сильфоне. Конечный диастолический объем задавался амплитудой размаха рычага стеклоочистителя.
Вся часть с баллоном помещалась в аквариум, чтобы избежать распространение Tc99m в случае аварии.
Край аквариума был оклеен “липучкой” к которой крепился детектор прибора. Мы установили конечный систолический объем равным 40мл., а конечный диастолический объем 80мл. Таким образом фракция выброса у нас была равна 50% и контролировалась измерением КСО и КДО путем погружения баллона в мерный сосуд. Затем в объем сильфона и баллона вводили Tc99m в таком количестве, чтобы 1мл содержал 1-1,5 мБк. Эксперименты проводили: с голым баллоном, с рассеивателем справа от баллона в виде бумажного стаканчика имеющего радиоактивность в 1,5 раза больше чем в баллоне и активность в 5 раз больше баллона (имитация застойных легких).
Проводилось накопление информации, не менее чем полчаса для каждого случая. Благодаря набору программ мы могли видеть изменения фракции выброса во времени, а также гистограмму фракции выброса при каждом условии эксперимента где можно было вычислить среднюю фракцию выброса.
Необходимо отметить, что отсечка энергий в нашем детекторе была установлена так, что мы регистрировали фотоны с энергией начиная с 60кэв.
Таким образом заведомо позволяя попасть в спектр рассеянному излучению можно утверждать, что это излучение вносит существенный вклад в показатели фракции выброса.
Следующая серия опытов была проведена с отсечкой на уровне 100кэв. Активность в модели 1-1,5мБк/мл в рассеивателе 3-4мБк/мл.
Сначала снимали данные без рассеивателя, а потом с помещением рассеивателя рядом с моделью левого желудочка.
КДО был несколько увеличен при заполнении модели, а фракция выброса по измерению в мерном сосуде составила 56%.
Таким образом подняв отсечку до 100кэв, мы минимизировали влияние рассеянного излучения.
Дальнейшее увеличение порога дискриминатора не имеет смысла, т.к. исходя из работ Фелпса[4] придется, чтобы убрать все рассеянные фотоны, поднять отсечку до 120-130кэв, что резко уменьшит чувствительность детектора и ухудшит статистику диагностического исследования.
Лучевая нагрузка: как ее уменьшить и сколько можно делать КТ?
Компьютерная томография основана на ионизирующем рентгеновском излучении. Сканирование на томографе с возможностью построения 3D-реконструкций внутренних органов, сосудов и костей — высокоточный метод обследования, предпочтительный в ряде сложных ситуаций: после инсультов, при пневмониях, подозрении на онкологию. Однако такое обследование нельзя проходить часто.
В этой статье мы разберем, в чем заключается вред рентгеновского излучения и как уменьшить его влияние, если норма допустимого была превышена.
Чем вредно ионизирующее (рентгеновское) облучение?
По данным актуальных исследований библиотек РИНЦ и PubMed, а также в соответствии с действующими нормами радиационной безопасности населения РФ (НРБ), не рекомендуется облучается более чем на 15-20 мЗв в год. На новых КТ-аппаратах (МСКТ), в зависимости от исследуемых зон, это около 5-8 сканирований. На аппаратах старого образца из-за меньшего количества чувствительных датчиков, срезов и большего времени сканирования лучевая нагрузка выше.
После КТ радиоактивные элементы не сохраняются и не накапливаются в организме человека. X-ray лучи сканируют только зону интереса, и это длится 30-45 секунд.
Организм человека содержит необходимые ему химические элементы — водород, железо, калий и др. Распад этих элементов — тоже в своем роде является радиоактивным процессом, который происходит ежесекундно, на протяжении всей жизни человека. Некоторое количество радиации человек получает из атмосферы, воды, от природных радионуклидов. Это называется естественным радиационным фоном.
Доза радиации, полученная пациентом в рамках медицинских обследований не велика — это справедливо как для рентгена, так и для КТ. Однако организм каждого человека по-разному реагирует на воздействие x-ray излучения: если одни пациенты сравнительно легко переносят лучевую нагрузку, равную 50 мЗв, то для других аналогичной по воздействию будет нагрузка 15 мЗв.
Поскольку норма относительна, а порог, при котором негативного воздействия гарантированно не произойдет, отсутствует, принято считать, все виды исследований с применением ионизирующего излучения потенциально вредны. Организм взрослого человека более резистентен к радиации, а дети более чувствительны. Однако у некоторых пациентов имеются отягчающие факторы в анамнезе или индивидуальные особенности организма.
Например, по одним данным считается, что у годовалого ребенка, которому проводится КТ брюшной полости, пожизненный риск онкологии возрастает на 0,18%. Однако если ту же процедуру проходит взрослый или пожилой человек, то этот риск будет существенно ниже. Считается, что регулярное дозированное рентгеновское облучение даже полезно, поскольку организм адаптируется к лучевой нагрузке, и его защитные силы возрастают.
По данным другого исследования, проводимого на когортной группе детей в период с 1996 по 2010 гг. в США, «ежегодно по стране 4 миллиона детских компьютерных томографов головы, живота / таза, грудной клетки или позвоночника вызовут 4870 случаев рака. Этот процент уменьшится, если сократить количество исследований, доза облучения в которых превышает 20 мВз».*
Избыток радиации может стать спусковым механизмом для онкологии, дегенеративных нейрозаболеваний (болезнь Альцгеймера, болезнь Паркинсона). Беременным женщинам (даже если факт беременности еще не подтвержден, но существует вероятность вынашивания плода на данный момент) противопоказано дополнительное радиационное воздействие, то есть делать КТ в этот период можно только по жизненным показаниям, из-за риска тератогенного воздействия ионизирующего излучения на формирующийся плод.
Большинство медиков сегодня склоняются к мнению, что польза целесообразной компьютерной томографии несомненно превышает вред, однако уровень лучевого воздействия на организм, даже с целью медицинской диагностики, следует сводить к минимуму. Например, для наблюдения изменений легочных лимфоузлов или камней в почках диагностические изображения могут быть получены при дозе на 50-75 % ниже, чем при использовании стандартных протоколов. То есть в некоторых случаях могут быть применены низкодозные КТ-протоколы.
Таблица приблизительных значений лучевой нагрузки при КТ (МСКТ)*
*В таблице приведены усредненные и ориентировочные значения, которые могут варьировать в большую или меньшую сторону в зависимости от:
Томограф оснащен дозиметром, который позволяет определить уровень эффективной лучевой нагрузки в каждом конкретном исследовании. Это значение указывают в заключении и в специальном файле отчета на DVD-диске или флешке, выдаваемой пациенту по итогам исследования.
Как радиоактивное ионизирующее излучение воздействует на организм человека?
Радиоактивное излучение запускает механизм выработки свободных радикалов. Их избыток при низком антиоксидантом (защитном) статусе организма приводит к разрушению клеточных компонентов, в том числе к деструкции и сокращению теломеров — концевых участков молекул ДНК. Также процессу окисления подвержены липиды и белки мембран.
В норме организм человека легко переносит диагностические мероприятия и самостоятельно восстанавливается — дополнительно ничего предпринимать не нужно. Вслед за окислительными процессами, вызванными свободными радикалами, начинается восстановление, и ресурсов организма для этого достаточно.
В целом, среднестатистический здоровый организм взрослого человека в состоянии восстановиться после облучения, равного 50-100 мЗв в год. При большем систематическом воздействии радиации развивается лучевая болезнь.
Как уменьшить вред воздействия ионизирующего облучения?
Если пациенту показана КТ, и никакое другое обследование (МРТ, УЗИ) не может заменить этот метод, то:
Перед процедурой и во время нее:
1.Уточните, на каком КТ аппарате проводится обследование. Предпочтение следует отдать мультиспиральным томографам нового образца (32 среза и более).
2.Уточните, сколько будет длиться сканирование. Чем меньше оно длится, тем лучше. Современным КТ-аппаратам достаточно менее 1 минуты, чтобы сделать серию сканов.
3.Заранее уточните, какая лучевая нагрузка в мЗв будет получена при вашем исследовании (в среднем).
4.Не нарушайте технику проведения процедуры и внимательно слушайте рентген-лаборанта. В противном случае исследование нужно будет повторить.
После КТ
Если лучевая нагрузка была высокой, уменьшить вред можно следующими способами:
1.Усильте естественную защиту организма. Это можно сделать, добавив в рацион продукты, обогащенные антиоксидантами: свеклу, чернику, виноград, брокколи, гречку, чернослив, красный перец. Витамины А, Е, С препятствуют клеточным повреждениям.
2.Не пренебрегайте физическими нагрузками. Полезна даже ежедневная ходьба (3-5 км).
3.Не подвергайте свой организм психологическому стрессу и высыпайтесь.
Исследования пациентов в реабилитационных группах после перенесенных онкологических заболеваний показывают, что для удлинения теломеров необходимы две простые вещи (они же и препятствуют радиационному старению) — это здоровый образ жизни (в том числе регулярная физическая активность, качественный сон и питание) и социальная поддержка или доброжелательное общение.
Текст подготовил
Котов Максим Анатольевич, главный врач центра КТ «Ами», кандидат медицинских наук, доцент. Стаж 19 лет
Если вы оставили ее с 8:00 до 22:00, мы перезвоним вам для уточнения деталей в течение 15 минут.
Если вы оставили заявку после 22:00, мы перезвоним вам после 8:00.
Медицинские интернет-конференции
Языки
Заболевания медицинских работников от воздействия ионизирующего излучения и их профилактика
Комлева Ю.В., Махонько М.Н., Шкробова Н.В.
Резюме
Ионизирующее излучение, воздействие которого возможно при несоблюдении правил безопасности на рабочем месте, считается самым распространенным фактором, приводящим к развитию лейкоза. Одной из форм патологии от воздействия ионизирующего излучения (рентгеновские лучи, γ-лучи, нейтроны) у работников рентгеновских кабинетов также является лучевая болезнь, лучевая катаракта, рак кожи. Заболевания, вызванные воздействием ионизирующих излучений, и связанные с ними отдаленные последствия для здоровья медицинского персонала, требуют особого внимания к проведению профилактических мероприятий со стороны руководства лечебно-профилактического учреждения.
Ключевые слова
Статья
Цель. Изучить влияние ионизирующего излучения на медицинских работников.
Задачи исследования. Определить заболевания у медицинского персонала, возникающие в процессе выполняемых работ от ионизирующего излучения и меры их профилактики.
Материалы и методы. Проведен анализ литературных данных и материалов исследований о медицинских работниках, подвергающихся воздействию ионизирующего излучения.
Одной из форм патологии от воздействия ионизирующего излучения (рентгеновские лучи, γ-лучи, нейтроны) у работников рентгеновских кабинетов также является лучевая катаракта. Специалисты описывают, что особенно опасны в отношении катарактогенного действия повторные облучения малыми дозами нейтронов. Катаракта обычно развивается постепенно, продолжительность скрытого периода зависит от полученной дозы и в среднем составляет от 2 до 5 лет. Клиника имеет много общих симптомов с тепловой катарактой. Помутнение вначале появляется у заднего полюса хрусталика под капсулой в виде мелкой зернистости или вакуолей. Зернистость постепенно принимает вид диска (или «пончика»), резко отграниченного от прозрачной части хрусталика. В этой стадии катаракта на остроту зрения не влияет. В дальнейшем помутнение приобретает форму чаши или блюдца. В свете щелевой лампы помутнение по своей структуре напоминает туф с металлическим оттенком. В более позднем периоде появляются вакуоли и поясообразные помутнения под передней капсулой. Постепенно весь хрусталик становится непрозрачным, зрение падает до светоощущения. В большинстве случаев лучевые катаракты прогрессируют медленно. Иногда начальные помутнения держатся годами, не вызывая заметного понижения зрения. Признаки лучевой болезни необязательны.
Лучевая болезнь – довольно редкое проявление действия ионизирующего излучения на медицинских работников, но при достижении определенного уровня доз может развиться хроническая лучевая болезнь. У медицинских работников при контакте с соответствующей аппаратурой вероятность отрицательного действия рентген- и γ-излучений повышается в случае плохой защиты трубки, при пренебрежении средствами индивидуальной защиты или при их изношенности.
Основой системы профилактики профессиональных заболевания являются обязательные предварительные и периодические медицинские осмотры работников, трудовая деятельность которых связана с вредными и опасными производственными факторами. Согласно Приказу МЗ и СР РФ от 12.04.2011 года №302н «Об утверждении перечней вредных и/или опасных производственных факторов и работ, при выполнении которых проводятся предварительные и периодические медицинские осмотры (обследования), и порядка проведения обязательных предварительных и периодических медицинских осмотров (обследований) работников, занятых на тяжелых работах с вредными и (или) опасными условиями труда» медицинские работники, подвергающиеся действию ионизирующего излучения, должны в обязательном порядке проходить медосмотры 1 раз в год с консультацией следующих специалистов: офтальмолога, дерматовенеролога, невролога, оториноларинголога, хирурга, онколога. Также делаются лабораторные и функциональные исследования: развернутый общий анализ крови, подсчет ретикулоцитов, спирометрия, рентгенография грудной клетки в двух проекциях, биомикроскопия сред глаза, офтальмоскопия глазного дна, острота зрения с коррекцией и без неё. По рекомендации врачей-специалистов назначаются УЗИ органов брюшной полости, щитовидной железы и маммография женщинам. К работе с ионизирующими излучениями не должны допускаться лица, имеющие наследственную предрасположенность к опухолевым заболеваниям, а также с хромосомной нестабильностью. Важно выявление лиц с иммунологической недостаточностью и проведение среди них мероприятий для нормализации иммунного статуса, применение препаратов, предотвращающих бластомогенный эффект (методы гигиенической, генетической, иммунологической и биохимической профилактики). Существенное значение имеют диспансеризация лиц, работающих с источниками ионизирующих излучений, раннее выявление, лечение хронических фоновых и предопухолевых заболеваний, то есть своевременное и качественное проведение медицинских осмотров. Противопоказаниями к работе с ионизирующими излучениями являются: содержание гемоглобина в периферической крови менее 130 г/л у мужчин и менее 120 г/л у женщин; содержание лейкоцитов менее 4,0*109/л и тромбоцитов менее 180*109/л; облитерирующие заболевания сосудов вне зависимости от степени компенсации; болезнь и синдром Рейно; лучевая болезнь и ее последствия; злокачественные новообразования; доброкачественные новообразования, препятствующие ношению спецодежды и туалету кожных покровов; глубокие микозы; острота зрения с коррекцией не менее 0,5 Д на одном глазу и 0,2 Д – на другом; рефракция скиаскопически: близорукость при нормальном глазном дне до 10,0 Д, гиперметропия до 8,0 Д, астигматизм не более 3,0 Д; катаракта радиационная. Контроль за состоянием здоровья лиц, работающих с канцерогенными факторами, должен осуществляться и после перехода их на другую работу, а также выхода на пенсию, в течение всей жизни.
Литература
2. Гигиена: 2-е изд-е, перераб. и доп. / Под ред. акад. РАМН Г.И. Румянцева. – М.: ГЭОТАРМ ЭД, 2002. – 608 с.: ил. – (Серия «XXI век»).
3. Жевак Т.Н., Чеснокова Н.П., Шелехова Т.В. Хронический лимфолейкоз: современные концепции этиологии, патогенеза и особенностей клинического течения (обзор) // Саратовский научно- медицинский журнал. – Т.7, №2. – С.377-385.
4. Измеров Н.Ф., Каспаров А.А. Медицина труда. Введение в специальность. – М.: Медицина, 2002. – 392 с.: ил.
5. Косарев В.В. Профессиональные заболевания медицинских работников: монография. – Самара, «Перспектива», 1998. – 200 с.
9. Приказ МЗ и СР РФ от 12.04.2011г. №302н «Об утверждении перечней вредных и/или опасных производственных факторов и работ, при выполнении которых проводятся предварительные и периодические медицинские осмотры (обследования), и порядка проведения обязательных предварительных и периодических медицинских осмотров (обследований) работников, занятых на тяжелых работах с вредными и (или) опасными условиями труда».
11. СанПиН 2.6.1.1192-03 «Гигиенические требования к устройству и эксплуатации рентгеновских кабинетов, аппаратов и проведению рентгенологических исследований». Утверждены 14 февраля 2003 г. и введены в действие постановлением Главного государственного санитарного врача РФ Г.Г. Онищенко от 18 февраля 2003 г. №8.
12. Справочник терапевта / Сост. А.В. Тополянский. – М.: Эксмо, 2008. – 544 с. – (Новейший медицинский справочник).
И это всё о нём. Место рентгеновского излучения среди других видов ионизирующих излучений Е. В. Штрыкова (№2, 2013)
Главный специалист-эксперт отдела специализированного надзора за радиационной безопасностью Межрегионального управления № 153 Федерального медико-биологического агентства Е.В. Штрыкова
Радиоактивность – это спонтанный (самопроизвольный) распад ядер со строго определенной вероятностью, сопровождающийся ядерным (ионизирующим) излучением.
Рентгеновское излучение по своей природе относится к волновому (фотонному) излучению, которое в шкале электромагнитных излучений (ЭМИ) следует за ультрафиолетовым излучением и имеет меньшую длину волны.
По способу взаимодействия с облучаемым объектом все ионизирующие излучения можно разделить на три вида: корпускулярное излучение с массой покоя и зарядом (альфа-, бета-, протонное, мезонное и пр.); корпускулярное излучение с массой покоя, но без заряда (нейтронное) и электромагнитное излучение (гамма- и рентгеновское).
Что отличает генерируемые ионизирующие излучения от ионизирующих излучений ядерного происхождения? Эти излучения различны по своему происхождению (по способу генерирования) со всеми вытекающими из этого последствиями. Характеристики ядерного излучения (такие как: вид излучения, энергия, период полураспада, ионизирующая и проникающая способности и многие другие) зависят исключительно от свойств распадающегося ядра и не могут быть изменены по желанию человека.
То есть, рентгеновское излучение, также как и ядерные излучения, относится к ионизирующему излучению (ИИ). Общим свойством всех ионизирующих излучений является их характер действия на окружающую среду, через которую проходит излучение, а именно, способность излучения при взаимодействии со средой передавать ей свою энергию. Эта энергия достаточно велика, чтобы в процессе взаимодействия со средой ядерного излучения (независимо от его вида) и рентгеновского излучения произвести ионизацию и (или) возбуждение атомов среды. По этой причине все излучения, взаимодействие которых со средой приводит к образованию ионов разных знаков, называются ионизирующими.
Удельная ионизация (линейная плотность ионизации ЛПИ) – число ионных пар на единице длины пробега. Сравним удельную ионизацию альфа-, бета- и рентгеновского излучений. Например, в воздухе на 1 см пробега альфа-частиц с энергией 1 МэВ образуется 40 тысяч пар ионов, для бета-частиц такой же энергии – примерно в 800 раз меньше. Плотность ионизации фотонного излучения примерно на два порядка меньше, чем бета-излучения. К примеру, при поглощении фотона с энергией 100 кэВ в воздухе образуется примерно 3 тыс. пар ионов, при длине пробега порядка 50 м.
Виды ионизирующих излучений
Все свойства ИИ спонтанны
Все свойства ИИ регулируемы
Электромагнитные волны (ЭМВ)
Нет массы покоя и заряда
Нет массы покоя и заряда
К примеру, ускорен-ные электроны
Моноэнергетические
(С одинаковой начальной энергией)
Тормозное (непрерывный энергетический спектр)
Характеристи-ческое (диск-ретный спектр энергии)
Нейтронное
(масса покоя, нет заряда).
Корпускулярное, но косвенно ионизирующее
Механизмы ионизации облучаемой среды каждым из трех вышеназванных видов ИИ различны. Корпускулярное излучение (к примеру, альфа- и бета-) относится к классу непосредственно ионизирующего излучения, в то время как нейтроны (частицы без заряда) и фотоны сами не производят ионизации, поэтому относятся к косвенно ионизирующему излучению. При их попадании в среду на первом этапе должно появиться непосредственно ионизирующее излучение, которое и производит ионизацию. В среде, пронизываемой фотонами, конечные эффекты (ионизация и возбуждение) происходят не за счет прямого взаимодействия фотонов со средой, а через посредство вторичных электронов и позитронов. Фотон является слабо ионизирующей частицей, испытывающей редкие взаимодействия (но теряющей при каждом взаимодействии значительную часть своей энергии).
Своеобразно, косвенным образом, ионизируют среду нейтроны. Нейтроны различных энергий могут создавать в облучаемой среде разнообразные непосредственно ионизирующие частицы: протоны, альфа-частицы, ядра отдачи и пр., а также могут образовывать новые радиоизотопы (наведенная активность).
Для каждого вида излучений пространственное распределение поглощенной энергии, затраченной на «производство» пар ионов по всей длине пробега излучения в облучаемой среде и последствия этого, в том числе радиобиологические эффекты, имеют явно выраженную специфику. Чем больше потери энергии на единице пути пробега излучения, тем меньше пробег. Очень малую длину пробега в среде имеет альфа-излучение в силу того, что оно обладает самой большой удельной ионизацией или плотностью ионизации. Это значит, что альфа-частицы расходуют (на ионизацию) всю свою энергию на очень малой длине пробега; иными словами, альфа-излучение имеет самую большую величину линейной передачи энергии (ЛПЭ–пространственное распределение энергии вдоль траектории частицы), (кэВ/мкм). Отметим, что гамма- и рентгеновское излучения имеют самую низкую величину ЛПЭ.
Таким образом, при равенстве энергий длина пробега в среде бета-излучения будет значительно больше, чем альфа-излучения. Особенностью рентгеновского и гамма-излучений является их самая большая проникающая способность (при малой плотности ионизации).
Физические свойства рентгеновского излучения
ЛПЭ – это энергия, локально переданная среде движущейся заряженной частицей при перемещении ее на некоторое расстояние, к этому расстоянию: ЛПЭ=dE/dl.
Все электромагнитное излучение может быть представлено как непрерывный спектр от низкого энергетического уровня до высокого: от радиоволн (волн Герца) до космического излучения (или излучения, получаемого в мощных ускорителях). Не все типы электромагнитных излучений (ЭМИ) относятся к категории ионизирующих. Среди ЭМИ только те способны вызвать ионизацию атомов облучаемой среды, энергетические кванты которых по меньшей мере равны энергии связи электронов в атоме. Эта энергия связи для некоторых металлов порядка 4 эВ и УФ-излучение с длинами волн ниже 3000 Å способны вызвать ионизацию этих металлов. Между тем название «ионизирующее излучение» сохраняется только за излучением, способным ионизировать воздух, то есть кванты которых имеют энергию выше чем 15 эВ.
Согласно этому, ионизирующими свойствами обладают излучения, расположенные в шкале ЭМИ правее УФ-излучения.
Переход от одного вида электромагнитного излучения к другому достаточно условен. В представленном выше спектре ЭМИ рентгеновское
и гамма-излучение одной длины волны – это одни и те же фотоны, различие состоит, во-первых, в их происхождении и, во-вторых, в том, что рентгеновское излучение состоит из двух компонент (тормозное и характеристическое излучение). Несмотря на то, что поглощающие свойства рентгеновского и гамма-излучения при равных энергиях одинаковы, но распределение его в теле из-за разной однородности (по энергии) различно.
Сравнительные данные для различных электромагнитных излучений
Область спектра | Длина волны (l), нм | Частота (n), герц | Энергия кванта (hn), эВ |
Видимые лучи |