С помощью чего записываются числа ответ

Разряды и классы чисел

С помощью чего записываются числа ответ. Смотреть фото С помощью чего записываются числа ответ. Смотреть картинку С помощью чего записываются числа ответ. Картинка про С помощью чего записываются числа ответ. Фото С помощью чего записываются числа ответ

Числа и цифры

Числа — это единицы счета. С помощью чисел можно сосчитать количество предметов и определить различные величины.

Для записи чисел используются специальные знаки — цифры. Всего их десять: 1, 2, 3, 4, 5, 6, 7, 8, 9, 0.

Натуральные числа — это числа, которые мы используем при счете. Вот они: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, …

От количества цифр в числе зависит его название.

Число, которое состоит из одного знака, называется однозначным. Наименьшее однозначное — 1, наибольшее — 9.

Число, которое состоит из двух знаков цифр, называется двузначным. Наименьшее двузначное — 10, наибольшее — 99.

Числа, которые записаны с помощью двух, трех, четырех и более цифр, называются двузначными, трехзначными, четырехзначными или многозначными. Наименьшее трехзначное — 100, наибольшее — 999.

Каждая цифра в записи многозначного числа занимает определенное место — позицию.

Классы чисел

Цифры в записи многозначных чисел разбивают справа налево на группы по три цифры в каждой. Эти группы называют классами. В каждом классе цифры справа налево обозначают единицы, десятки и сотни этого класса.

С помощью чего записываются числа ответ. Смотреть фото С помощью чего записываются числа ответ. Смотреть картинку С помощью чего записываются числа ответ. Картинка про С помощью чего записываются числа ответ. Фото С помощью чего записываются числа ответ

Названия классов многозначных чисел справа налево:

Чтобы читать запись многозначного числа было удобно, между классами оставляют небольшой пробел. Например, чтобы прочитать число 125911723296, удобно сначала выделить в нем классы:

А теперь прочитаем число единиц каждого класса слева направо:

Разряды чисел

От позиции, на которой стоит цифра в записи числа, зависит ее значение. Например:

Можно сформулировать иначе и сказать, что в заданном числе 1 123 цифра 3 располагается в разряде единиц, 2 в разряде десятков, 1 в разряде сотен, а 1 служит значением разряда тысяч.

Проясним, что такое разряд в математике. Разряд — это позиция или место расположения цифры в записи натурального числа.

У каждого разряда есть свое название. Слева всегда живут старшие разряды, а справа — младшие. Чтобы быстрее запомнить, можно использовать таблицу.

С помощью чего записываются числа ответ. Смотреть фото С помощью чего записываются числа ответ. Смотреть картинку С помощью чего записываются числа ответ. Картинка про С помощью чего записываются числа ответ. Фото С помощью чего записываются числа ответ

Количество разрядов всегда соответствует количеству знаков в числе. В этой таблице есть названия всех разрядов для числа, которое состоит из 15 знаков. У следующих разрядов также есть названия, но они используются крайне редко.

Низший (младший) разряд многозначного натурального числа — разряд единиц.

Высший (старший) разряд многозначного натурального числа — разряд, соответствующий крайней левой цифре в заданном числе.

Разрядные единицы обозначают так:

Каждые три разряда, следующие друг за другом, составляют класс. Первые три разряда: единицы десятки и сотни — образуют класс единиц (первый класс). Следующие три разряда: единицы тысяч, десятки тысяч и сотни тысяч — образуют класс тысяч (второй класс). Третий класс будут составлять единицы, десятки и тысячи миллионов и так далее.

Чтобы легче понимать математику — записывайтесь на наши курсы по математике!

Потренируемся

Пример 1. Записать цифрами число, в котором содержится:

Все разрядные единицы, кроме простых единиц, называют составными единицами. Каждые десять единиц любого разряда составляют одну единицу следующего более высокого разряда:

Чтобы узнать, сколько в числе заключается всех единиц какого-либо разряда, нужно отбросить все цифры, обозначающие единицы низших разрядов и прочитать число, которое выражено оставшимися цифрами.

Пример 2. Сколько сотен содержится в числе 6284?

В числе 6284 на третьем месте в классе единиц стоит цифра 2, значит, в числе есть две сотни.

Следующая цифра слева — 6, означает тысячи. Так как в каждой тысяче содержится 10 сотен то, в 6 тысячах их заключается 60.

Значит, в данном числе содержится 62 сотни.

Цифра 0 в любом разряде означает отсутствие единиц в данном разряде.

Проще говоря, цифра 0 в разряде десятков означает отсутствие десятков, в разряде сотен — отсутствие сотен и т. д. В том разряде, где стоит 0, при чтении числа ничего не произносится:

Чтобы проще освоить эту тему, можно распечатать таблицу классов и разрядов для учащихся 4 класса и обращаться к ней, если возникнут сложности.

Источник

Математика. 5 класс

Конспект урока

Ряд натуральных чисел. Десятичная система записи натуральных чисел

Перечень вопросов, рассматриваемых в теме:

— десятичная запись натуральных чисел;

— разрядность натуральных чисел

Натуральные числа – числа, которые используют при подсчёте предметов.

Натуральный ряд – последовательность всех натуральных чисел, расположенных в порядке возрастания.

Система счисления – это способ записи чисел с помощью заданного набора специальных знаков (цифр).

Теоретический материал для самостоятельного изучения

С древних времен у человека была потребность в счёте.

Числа, которые используют при подсчёте предметов, называют натуральными числами.

Таким образом, числа: один, два, три, …, десять, …, сто, …, тысяча, …, миллион и так далее – это натуральные числа.

Натуральные числа один, два, три, четыре, пять и так далее, записанные в порядке возрастания и без пропусков, образуют ряд натуральных чисел.

Стоит отметить, что самое маленькое натуральное число – единица (1). В натуральном ряду каждое следующее число на 1 больше предыдущего. Натуральный ряд бесконечен, наибольшего числа в нём нет.

В настоящее время принята десятичная система записи чисел (десятичная система счисления), в которой числа записываются при помощи десяти знаков: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 – эти знаки называют цифрами.

Одна и та же цифра может иметь различное значение в зависимости от позиции, где она расположена в записи числа. Например, в записи числа пятьсот пятьдесят пять первая справа цифра пять означает пять единиц, вторая – пять десятков, третья – пять сотен.

С помощью чего записываются числа ответ. Смотреть фото С помощью чего записываются числа ответ. Смотреть картинку С помощью чего записываются числа ответ. Картинка про С помощью чего записываются числа ответ. Фото С помощью чего записываются числа ответ

Вот поэтому десятичную систему счисления называют позиционной.

Натуральные числа, записанные одной цифрой, называют однозначными, а записанные несколькими цифрами – многозначными: двумя – двузначными, тремя – трёхзначными и т. д.

Например, числа 1, 8, 9 – однозначные числа; 10, 66, 89 – двузначные числа; 111, 145 – трёхзначные числа; 123456 – шестизначное число.

Для чтения многозначных чисел их разбивают, начиная справа, на группы по три цифры в каждой (самая левая группа может состоять из одной или двух цифр). Эти группы называются классами.

Первый класс справа называют классом единиц, второй – классом тысяч, третий – классом миллионов, четвёртый – классом миллиардов и т. д.

Источник

Чтение и запись натуральных чисел

Пройти тест по теме «Натуральные числа и действия над ними» можно по ссылке. Проверьте свои знания!

Для передачи на письме любого числа в понятном для всех виде, мы используем особые знаки, получившие название цифры.

Цифры – это особые знаки, которые мы используем для записи чисел.

Кроме самих знаков, нам понадобится система правил, которая описывает способ наименования и обозначения чисел. Она получила название система счисления или система записи чисел.

Система счисления – это набор правил, который описывает наименование и обозначение чисел на письме при помощи особых знаков: цифр.

Существует много систем счисления, но здесь мы будем рассматривать только ту, которую пользуемся каждый день.

Слово позиционная указывает на то, что значение, роль любой цифры, зависит от места ее расположения в числе.

Слово десятеричная означает, что любое натуральное число записывается на письме при помощи десяти особых символов, то есть, цифр, и их комбинаций:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

Запись натурального числа – это его изображение на письме при помощи цифр и системы их записи.

Количество цифр, с помощью которых записано натуральное число, влияет на его название.

Число с тремя, четырьмя, пятью и более цифрами, соответственно, называется трехзначным, четырехзначным, пятизначным и т.д.

С помощью чего записываются числа ответ. Смотреть фото С помощью чего записываются числа ответ. Смотреть картинку С помощью чего записываются числа ответ. Картинка про С помощью чего записываются числа ответ. Фото С помощью чего записываются числа ответ

Таблица 1. Наибольшие и наименьшие натуральные однозначные и многозначные числа.

Цифра и число – это не одно и то же! Цифра – это всего лишь знак, при помощи которого мы можем записывать числа. Цифр всего лишь десять, а чисел – бесконечное множество. Число может быть записано при помощи цифр (182), и также при помощи слов (сто восемьдесят два).

Рассмотрим запись натурального числа более подробно.

В статье «Названия чисел до тысячи и более» подробно рассказано об устной нумерации чисел, поэтому здесь мы просто воспользуемся этими знаниями.

Запись натуральных чисел в десятеричной системе счисления

Для записи единиц, то есть, однозначного числа, в десятеричной системе счисления используются девять цифр:

нуль при этом означает отсутствие единиц в данной позиции.

Двухзначное число на записи обозначается при помощи приставления слева от цифры, обозначающей количество единиц в числе, соответствующей цифры, выражающей количество десятков единиц в данном числе.

Например, пятьдесят три, то есть, пять десятков и три единицы записывается на письме так: 53, а восемьдесят, то есть, восемь десятков и нуль единиц – 80.

Подобным образом формируется запись любого многозначного натурального числа. К примеру, шестьсот сорок два (шесть сотен, четыре десятка и две единицы) записывается как 642, а двенадцать тысяч пятьсот четыре (двенадцать тысяч, пять сотен, нуль десятков и четыре единицы) – как 12504.

Как вы видите, каждое место, на котором находится цифра, имеет свое особое значение, а именно:

С помощью чего записываются числа ответ. Смотреть фото С помощью чего записываются числа ответ. Смотреть картинку С помощью чего записываются числа ответ. Картинка про С помощью чего записываются числа ответ. Фото С помощью чего записываются числа ответ

Таблица 2. Значения цифр в зависимости от места в числе.

Таким образом, при записи натурального числа соблюдается следующее правило:

Если в любом числе взять произвольно две расположенные рядом цифры, то левая будет обозначать единицы, которые в десять раз больше, чем те, которые обозначает правая цифра.

Чтение натуральных чисел

Чтобы прочитать натуральное число любой длины, необходимо разбить его справа налево на группы из трех цифр (то есть, на классы), и назвать слева направо количество единиц каждого класса, прибавляя к ним название класса. При этом, не произносят название класса, не имеющего ни одной единицы.

Например, число 18.328.509.000.612 должно быть прочитано так: 18 триллионов 328 миллиардов 509 миллионов 612.

Название класса единиц также обычно не произносят.

Источник

ПОВТОРЯЕМ ТЕОРИЮ

6. Заполните пропуски.

РЕШАЕМ ЗАДАЧИ

7. Запишите в таблицу число:

1) тридцать пять миллиардов триста сорок шесть миллионов шестьсот шестнадцать тысяч двести семьдесят семь.
2) семьсот тридцать три миллиарда двести пять миллионов пятьдесят шесть тысяч шестьдесят четыре.
3) двадцать миллиардов сорок тысяч девяносто.
4) двести три миллиарда пятьсот семьдесят девять тысяч сто.
5) восемь миллиардов пять миллионов двенадцать тысяч девятнадцать.
6) два миллиарда три тысячи один.

С помощью чего записываются числа ответ. Смотреть фото С помощью чего записываются числа ответ. Смотреть картинку С помощью чего записываются числа ответ. Картинка про С помощью чего записываются числа ответ. Фото С помощью чего записываются числа ответ

С помощью чего записываются числа ответ. Смотреть фото С помощью чего записываются числа ответ. Смотреть картинку С помощью чего записываются числа ответ. Картинка про С помощью чего записываются числа ответ. Фото С помощью чего записываются числа ответ

8. Запишите, как читается число.

1) 4 328 176 214
2) 3 020 004 400

1) 4 миллиарда 328 миллионов 176 тысяч 214
2) 3 миллиарда 020 миллионов 004 тысячи 400

9. Запишите число в виде суммы разрядных слагаемых.

1) 5 491 268 = 5*1 000 000+4*100 000+9*10 000+1*1000+2*100+6*10+8*1
2) 2 790 321 = 2*1 000 000+7*100 000+9*10 000+0*1000+3*100+2*10+1*1
3) 6 003 807 = 6*1 000 000+0*100 000+0*10 000+3*1000+8*100+0*10+7*1

10. Запишите число, составленное из тех же цифр, что и данное, но рассположенных в обратном порядке.

11. Припишите справа к данному числу число, составленное из тех же цифр, что и данное. Прочитайте полученное число и представьте его в виде суммы разрядных слагаемых.

С помощью чего записываются числа ответ. Смотреть фото С помощью чего записываются числа ответ. Смотреть картинку С помощью чего записываются числа ответ. Картинка про С помощью чего записываются числа ответ. Фото С помощью чего записываются числа ответ

12. Запишите все двузнычные числа, для записи которых используются только цифры 3, 6 и 8 (цифры могут повторяться).

33, 36, 63, 66, 68, 83, 86, 88, 38

13. Сколько существует двузначных чисел, у которых первая цифра больше второй?

1+2+3+4+5+6+7+8+9 = 10*4+5 = 45

Ответ: 45 (сорок пять).

ааа, аам, ама, маа, амм, мам, мма, ммм

15. Вставьте пропущенные числа.

Источник

Учитель информатики

Сайт учителя информатики. Технологические карты уроков, Подготовка к ОГЭ и ЕГЭ, полезный материал и многое другое.

§ 1.1. Системы счисления

Информатика. 8 класса. Босова Л.Л. Оглавление

Ключевые слова:

1.1.1. Общие сведения о системах счисления

Система счисления — это знаковая система, в которой приняты определённые правила записи чисел. Знаки, с помощью которых записываются числа (рис. 1.1), называются цифрами, а их совокупность — алфавитом системы счисления.

В любой системе счисления цифры служат для обозначения чисел, называемых узловыми; остальные числа (алгоритмические) получаются в результате каких-либо операций из узловых чисел.

Пример 1. У вавилонян узловыми являлись числа 1, 10, 60; в римской системе счисления узловые числа — это 1, 5, 10, 50, 100, 500 и 1000, обозначаемые соответственно I, V, X, L, С, D, М.

С помощью чего записываются числа ответ. Смотреть фото С помощью чего записываются числа ответ. Смотреть картинку С помощью чего записываются числа ответ. Картинка про С помощью чего записываются числа ответ. Фото С помощью чего записываются числа ответ

Рис. 1.1. Знаки, используемые для записи чисел в различных системах счисления

Системы счисления различаются выбором узловых чисел и способами образования алгоритмических чисел. Можно выделить следующие виды систем счисления:

Простейшая и самая древняя система — так называемая унарная система счисления. В ней для записи любых чисел используется всего один символ — палочка, узелок, зарубка, камушек. Длина записи числа при таком кодировании прямо связана с его величиной, что роднит этот способ с геометрическим представлением чисел в виде отрезков. Именно унарная система лежит в фундаменте арифметики, и именно она до сих пор вводит первоклассников в мир счёта. Унарную систему ещё называют системой бирок.

Система счисления называется непозиционной, если количественный эквивалент (количественное значение) цифры в числе не зависит от её положения в записи числа.

Пример 2. В древнеегипетской системе счисления числа 1, 2, 3, 4, 10, 13, 40 обозначались соответственно следующим образом:

С помощью чего записываются числа ответ. Смотреть фото С помощью чего записываются числа ответ. Смотреть картинку С помощью чего записываются числа ответ. Картинка про С помощью чего записываются числа ответ. Фото С помощью чего записываются числа ответ

Те же числа в римской системе счисления обозначаются так: I, II, III, IV, X, XIII, XL. Здесь алгоритмические числа получаются путём сложения и вычитания узловых чисел с учётом следующего правила: каждый меньший знак, поставленный справа от большего, прибавляется к его значению, а каждый меньший знак, поставленный слева от большего, вычитается из него.

Система счисления называется позиционной, если количественный эквивалент цифры зависит от её положения (позиции) в записи числа.Основание позиционной системы счисления равно количеству цифр, составляющих её алфавит.

Десятичная система

Десятичная система записи чисел, которой мы привыкли пользоваться в повседневной жизни, с которой мы знакомы с детства, в которой производим все наши вычисления, — пример позиционной системы счисления. Алфавит десятичной системы составляют цифры 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Алгоритмические числа образуются в ней следующим образом: значения цифр умножаются на «веса» соответствующих разрядов, и все полученные значения складываются. Это отчётливо прослеживается в числительных русского языка, например: «три-ста пять-десят семь».

Основанием позиционной системы счисления может служить любое натуральное число q > 1. Алфавитом произвольной позиционной системы счисления с основанием q служат числа 0, 1, …, q—1, каждое из которых может быть записано с помощью одного уникального символа; младшей цифрой всегда является 0.

Основные достоинства любой позиционной системы счисления — простота выполнения арифметических операций и ограниченное количество символов, необходимых для записи любых чисел.

В позиционной системе счисления с основанием q любое число может быть представлено в виде:

Запись числа по формуле (1) называется развёрнутой формой записиСвёрнутной формой записи числа называется его представление в виде 1 ± an-1an-2…a1a0,a-1…a-m. 1 Далее будут рассматриваться только положительные целые числа.

Пример 3. Рассмотрим десятичное число 14351,1. Его свёрнутая форма записи настолько привычна, что мы не замечаем, как в уме переходим к развёрнутой записи, умножая цифры числа на «веса» разрядов и складывая полученные произведения:

1.1.2. Двоичная система счисления

Двоичной системой счисления называется позиционная система счисления с основанием 2. Для записи чисел в двоичной системе счисления используются только две цифры: 0 и 1.

На основании формулы (1) для целых двоичных чисел можно записать:

Такая форма записи «подсказывает» правило перевода натуральных двоичных чисел в десятичную систему счисления: необходимо вычислить сумму степеней двойки, соответствующих единицам в свёрнутой форме записи двоичного числа.

Получим правило перевода целых десятичных чисел в двоичную систему счисления из формулы (1′).

Разделим аn-1 • 2 n-1 + аn-2 • 2 n-2 + … + а0 • 2 0 на 2. Частное будет равно аn-1 • 2 n-2 + … + а1, а остаток будет равен а0.

Полученное частное опять разделим на 2, остаток от деления будет равен а1.

Если продолжить этот процесс деления, то на n-м шаге получим набор цифр:

которые входят в двоичное представление исходного числа и совпадают с остатками при его последовательном делении на 2.

Таким образом, для перевода целого десятичного числа в двоичную систему счисления нужно последовательно выполнять деление данного числа и получаемых целых частных на 2 до тех пор, пока не получим частное, равное нулю. Исходное число в двоичной системе счисления составляется последовательной записью полученных остатков, начиная с последнего.

Пример 4. Переведём десятичное число 11 в двоичную систему счисления. Рассмотренную выше последовательность действий (алгоритм перевода) можно изобразить так:

С помощью чего записываются числа ответ. Смотреть фото С помощью чего записываются числа ответ. Смотреть картинку С помощью чего записываются числа ответ. Картинка про С помощью чего записываются числа ответ. Фото С помощью чего записываются числа ответ

Выписывая остатки от деления в направлении, указанном стрелкой, получим: 1110 = 10112.

Пример 5. Если десятичное число достаточно большое, то более удобен следующий способ записи рассмотренного выше алгоритма:

1.1.3. Восьмеричная система счисления

Восьмеричной системой счисления называется позиционная система счисления с основанием 8. Для записи чисел в восьмеричной системе счисления используются цифры: 0, 1,2, 3, 4, 5, 6, 7.

На основании формулы (1) для целого восьмеричного числа можно записать:

Например: 10638 = 1 • 8 3 + 0 • 8 2 + 6 • 8 1 + 3 • 8 0 = 56310.

Таким образом, для перевода целого восьмеричного числа в десятичную систему счисления следует перейти к его развёрнутой записи и вычислить значение получившегося выражения.

Для перевода целого десятичного числа в восьмеричную систему счисления следует последовательно выполнять деление данного числа и получаемых целых частных на 8 до тех пор, пока не получим частное, равное нулю. Исходное число в новой системе счисления составляется последовательной записью полученных остатков, начиная с последнего.

Пример 6. Переведём десятичное число 103 в восьмеричную систему счисления.

С помощью чего записываются числа ответ. Смотреть фото С помощью чего записываются числа ответ. Смотреть картинку С помощью чего записываются числа ответ. Картинка про С помощью чего записываются числа ответ. Фото С помощью чего записываются числа ответ

1.1.4. Шестнадцатеричная система счисления

Алфавит: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, А, В, С, D, Е, F.

Здесь только десять цифр из шестнадцати имеют общепринятое обозначение 0,…, 9. Для записи цифр с десятичными количественными эквивалентами 10, 11, 12, 13, 14, 15 обычно используются первые пять букв латинского алфавита.

Таким образом, запись 3AF16 означает:

Пример 7. Переведём десятичное число 154 в шестнадцатеричную систему счисления.

С помощью чего записываются числа ответ. Смотреть фото С помощью чего записываются числа ответ. Смотреть картинку С помощью чего записываются числа ответ. Картинка про С помощью чего записываются числа ответ. Фото С помощью чего записываются числа ответ

1.1.5. Правило перевода целых десятичных чисел в систему счисления с основанием q

Для перевода целого десятичного числа в систему счисления с основанием q следует:

Представим таблицу соответствия десятичных, двоичных, восьмеричных и шестнадцатеричных чисел от 0 до 2010.

С помощью чего записываются числа ответ. Смотреть фото С помощью чего записываются числа ответ. Смотреть картинку С помощью чего записываются числа ответ. Картинка про С помощью чего записываются числа ответ. Фото С помощью чего записываются числа ответ

В Единой коллекции цифровых образовательных ресурсов (http://sc.edu.ru/) размещена интерактивная анимация «Преобразование десятичного числа в другую систему счисления» (135050). С её помощью можно понаблюдать за переводом произвольного целого числа от 0 до 512 в позиционную систему счисления, основание которой не превышает 16.

В размещённой там же виртуальной лаборатории «Цифровые весы» (135009) вы сможете освоить ещё один способ перевода целых десятичных чисел в другие системы счисления — метод разностей.

1.1.6. Двоичная арифметика

Арифметика двоичной системы счисления основывается на использовании следующих таблиц сложения и умножения:

С помощью чего записываются числа ответ. Смотреть фото С помощью чего записываются числа ответ. Смотреть картинку С помощью чего записываются числа ответ. Картинка про С помощью чего записываются числа ответ. Фото С помощью чего записываются числа ответ

Пример 8. Таблица двоичного сложения предельно проста. Так как 1 + 1 = 10, то 0 остаётся в младшем разряде, а 1 переносится в старший разряд.

С помощью чего записываются числа ответ. Смотреть фото С помощью чего записываются числа ответ. Смотреть картинку С помощью чего записываются числа ответ. Картинка про С помощью чего записываются числа ответ. Фото С помощью чего записываются числа ответ

Пример 9. Операция умножения двоичных чисел выполняется по обычной схеме, применяемой в десятичной системе счисления, с последовательным умножением множимого на очередную цифру множителя.

С помощью чего записываются числа ответ. Смотреть фото С помощью чего записываются числа ответ. Смотреть картинку С помощью чего записываются числа ответ. Картинка про С помощью чего записываются числа ответ. Фото С помощью чего записываются числа ответ

Таким образом, в двоичной системе счисления умножение сводится к сдвигам множимого и сложениям.

1.1.7. «Компьютерные» системы счисления

В компьютерной технике используется двоичная система счисления, обеспечивающая ряд преимуществ по сравнению с другими системами счисления:

Обмен информацией между компьютерными устройствами осуществляется путём передачи двоичных кодов. Пользоваться такими кодами из-за их большой длины и зрительной однородности человеку неудобно. Поэтому специалисты (программисты, инженеры) на некоторых этапах разработки, создания, настройки вычислительных систем заменяют двоичные коды на эквивалентные им величины в восьмеричной или шестнадцатеричной системах счисления. В результате длина исходного слова сокращается в три, четыре раза соответственно. Это делает информацию более удобной для рассмотрения и анализа.

С помощью ресурса «Интерактивный задачник, раздел “Системы счисления»» (128659), размещённого в Единой коллекции цифровых образовательных ресурсов, можно проверить, насколько прочно вы усвоили изученный в этом параграфе материал.

Самое главное о системе счисления

Система счисления — это знаковая система, в которой приняты определённые правила записи чисел. Знаки, с помощью которых записываются числа, называются цифрами, а их совокупность — алфавитом системы счисления.

Система счисления называется позиционной, если количественный эквивалент цифры зависит от её положения (позиции) в записи числа. Основание позиционной системы счисления равно количеству цифр, составляющих её алфавит.

Основанием позиционной системы счисления может служить любое натуральное число q > 1.

В позиционной системе счисления с основанием q любое число может быть представлено в виде:

Вопросы и задания

1. Ознакомьтесь с материалами презентации к параграфу, содержащейся в электронном приложении к учебнику. Что вы можете сказать о формах представления информации в презентации и в учебнике? Какими слайдами вы могли бы дополнить презентацию?

10. Верны ли следующие равенства? а) 334 = 217;
б) 33
8 = 214.

11. Найдите основание х системы счисления, если: а) 14х = 910;
б) 2002
х = 13010.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *