сахароза обугливается концентрированной серной кислотой о чем свидетельствует этот опыт

Сахароза обугливается концентрированной серной кислотой о чем свидетельствует этот опыт

При более высокой температуре образуется этилен:

При смешивании стеклянной палочкой 30 г сахарного песку, слегка смоченного водой, с 30 мл концентрированной серной кислоты бурно протекает реакция обугливания сахара. Опыт проводят в химическом стакане емкостью 250-300 мл, помещенном в сосуд с песком или водой.

Дегидратация глюкозы и сахарозы в этом случае протекает по уравнению

Благодаря выделяющимся при реакции парам воды обугливающаяся масса вспучивается наподобие черной пены.

В стакан на 300 мл я поместил 30 г сахара, который предварительно растер в ступке (до состояния сахарной пудры). Предварительно увлажнять сахар не стал. В цилиндр налил 30 мл серной кислоты (согласно приведенному выше описанию) и начал добавлять кислоту в стакан с сахаром, перемешивая содержимое стеклянной палочкой. Однако когда я добавил 20 мл кислоты, масса стала достаточно жидкой на вид, и я решил, что кислоты хватит.

Во втором эксперименте я взял 60 г растертого сахара (водой не смачивал) и 30 мл серной кислоты. В этот раз до начала бурной реакции прошло примерно две с половиной минуты. Черная масса вышла за пределы стакана, хотя под конец она росла довольно медленно. После прекращения реакции обугленную массу удалось в целости вынуть из стакана.

Третий эксперимент провел не в стакане, а в мерном цилиндре на 100 мл. Взял 50 г растертого сахара и 25 мл концентрированной серной кислоты. Опыт прошел аналогично, но менее эффектно. Разница заключалась в том, что когда черная масса достигла верха цилиндра, она оставалась еще жидкой и частично стекла вниз.

Обугливание сахара концентрированной серной кислотой

Обугливание сахара концентрированной серной кислотой

Обугливание сахара концентрированной серной кислотой

Возможно, для ускорения начала реакции сахарный песок все-таки целесообразно увлажнить водой (при контакте воды с серной кислотой произойдет разогрев, что ускорит обугливание сахара), но добавить в смесь воду у меня рука не поднялась.

Его образование объясняется дегидратацией сахара серной кислотой

Кроме того, происходит восстановление концентрированной серной кислоты углем:

Если у вас нет концентрированной серной кислоты, для этого опыта вполне подойдет упаренный электролит для свинцовых аккумуляторов. Он представляет собой разбавленный раствор серной кислоты. Электролит упаривают до прекращения активного кипения и начала образования густых белых паров. Делать эту процедуру можно под хорошей тягой или на улице, но, ни в коем случае не в жилой квартире. Аэрозоль серной кислоты вдыхать недопустимо.

Обугливание сахара концентрированной серной кислотой

При перемешивании стеклянной палочкой 30 г сахарного песка, слегка смоченного водой, с 30 мл концентрированной серной кис­лоты бурно протекает реакция обугливания сахара. Опыт проводят в химическом стакане емкостью 250—300 мл, помещенном в сосуд с песком или водой. Дегидратация глюкозы и сахарозы в этом случае протекает по уравнению:

Благодаря выделяющимся при реакции парам воды обугливающаяся масса вспучивается наподобие черной пены.

Если у вас нет концентрированной серной кислоты, ее можно получить осторожным упариванием разбавленой кислоты при хорошей тяге (не делайте это в квартире!).

Для этой цели разведенную серную кислоту (электролит для свинцовых аккумуляторов) нагревают на песочной бане до появления белых паров. При этом кислота преобретает темную окраску в результате обугливания примесей органических веществ. Нашему опыту это практически не мешает. В процессе нагревания кипение жидкости не желательно, поскольку в этом случае возможно разбрызгивание. Помните, что вдыхание паров и аэрозоля H2SO4 опасно для здоровья.

Источник

Урок по химии на тему «Сахароза»(10класс)

Выбранный для просмотра документ Технологическая карта урока.docx

ФИО : Наумова Любовь Георгиевна

Место работы : МОУ «Магистральнинская СОШ №2″

6. Тема и номер урока в теме: Урок № 27 «Дисахариды. Сахароза» в теме

7 . Базовый учебник: Г.Е. Рудзитис, Ф.Г. Фельдман. Химия. 10 класс. Москва,

8 . Цель урока: Продолжить формирование знаний об углеводах, их роли в природе и жизни человека

образовательные : познакомить с особенностями строения дисахаридов на примере сахарозы, изучение химических свойств сахарозы, качественной реакции на неё, биологической роли сахарозы.

развивающие: находить причинно-следственные связи между составом вещества и типом химических реакций на примере сахарозы; правильно использовать химическую символику; развивать общеучебные умения и навыки при работе не только с учебником, но и другими источниками информации, в том числе и с Интернетом; формировать познавательный интерес, включая в содержание урока элементы новизны знаний.

воспитательные: развивать коммуникативную культуру, толерантное отношение к окружающим людям, участникам одной рабочей группы и всего коллектива в целом; целеустремлённость креативность, умение выступать перед аудиторией,

здоровьесберегающие: формирование здорового образа жизни, культуры питания, профилактика утомляемости.

Тип урока: Урок первичного предъявления новых знаний, с использованием презентации «Сахар, который мы едим», ресурсов единой образовательной коллекции.

формирование регулятивных универсальных учебных действий : определение темы, целеполагание,

планирование и регулирование своих действий

предметных : прогнозирование свойств углеводов на основании строения; прогнозировать строение вещества на основании свойств

коммуникативных универсальных учебных действий : уметь работать в одной группе с партнёром, принимать и реализовывать единственно верное решение на каждом этапе урока, осуществлять коррекцию в выступлениях партнёров, умение с достаточной полнотой и точностью выражать свои мысли в соответствии с поставленными задачами; владение монологической и диалогической формами речи

личностных : потребность в познании, умение объяснять явления, происходящие в быту, пользуясь приобретёнными знаниями

11. Формы работы учащихся: фронтальная, групповая, индивидуальная

12.Ресурсы: мультимедийное оборудование, коллекция образовательных ресурсов http://files.school-collection.edu.ru/dlrstore/d899c40f-75e2-ab0c-da1f-b9e21f32a7bb/index.htm, http://school-collection.edu.ru/catalog/res/bed08f95-8cff-11db-b606-0800200c9a66/?interface=catalog&class=53&subject=31

презентация «Сахар, который мы едим», растворы сахарозы, гидроксида натрия, сульфата меди, спиртовка

13. Технологии : Интернет-технология, технология критического мышления.

Технологическая карта урока

Нам так привычно налить чашечку чая, положить кусочек сахара, отпить… Сладко, а можно добавить и ломтик лимона, ещё слаще…

А когда человек начал использовать сахар? Что такое сахар с точки зрения химии?

Я думаю не сложно догадаться, о чём пойдёт сегодня речь на уроке. Да, сегодня нам предстоит выяснить строение, свойства сахарозы, её

получение и роль в жизни человека.. (Слайд1,2).

Отвечают: углеводы, сахароза, дисахарид

Отвечают: о сахарозе, свойствах, применении.

3. Актуализация знаний

Вспомните место сахарозы среди углеводов.

Слушают, вносят схему в тетрадь.

4. Открытие новых знаний:

1.История сахара. Презентация ( Слайд 4,5,6)

2. Строение молекулы сахара. (Экспериментальный этап)

Совершим маленький экскурс в историю сахара.

Мы уже знакомы с моносахаридами, глюкозой. Какие функциональные группы содержит глюкоза?

Ставит проблемный вопрос «Как можно выяснить, есть ли такие группы и у сахарозы».

Организует выполнение опыта.

Отвечают: «гидроксильные и альдегидную»

Предлагают проверить с помощью качественных реакций: с гидроксидом меди

Задаёт вопрос: какие результаты вы получили, и какие выводы можно сделать исходя из них.

Задаёт вопрос: Что такое дисахариды? Какие моносахариды могут входить в состав сахарозы? Как это можно узнать?

Предлагает посмотреть видеоопыт.

Задаёт вопрос: Теперь вы, наверное, ответите мне, почему при добавлении кусочка лимона чай становиться слаще.

Выполняют в группах

лабораторный опыт по инструктивным карточкам, обсуждают с соседом полученные результаты, делают выводы, заносят их в тетрадь.

сахароза не содержит альдегидной группы, но имеет гидроксильные группы т.е. её можно отнести к многоатомным спиртам.

Отвечают. Предлагают вновь сделать эксперимент

Смотрят презентацию (слайд 10), записывают структурную формулу глюкозы.

Отвечают: «Происходит кислотный гидролиз и образуется более сладкое вещество: фруктоза»

Источник

Воздействие серной кислоты на углеводы

сахароза обугливается концентрированной серной кислотой о чем свидетельствует этот опыт. Смотреть фото сахароза обугливается концентрированной серной кислотой о чем свидетельствует этот опыт. Смотреть картинку сахароза обугливается концентрированной серной кислотой о чем свидетельствует этот опыт. Картинка про сахароза обугливается концентрированной серной кислотой о чем свидетельствует этот опыт. Фото сахароза обугливается концентрированной серной кислотой о чем свидетельствует этот опыт

Описание презентации по отдельным слайдам:

Описание слайда:

ВОЗДЕЙСТВИЕ СЕРНОЙ КИСЛОТЫ НА УГЛЕВОДЫ
Выполняли:
Боек Светлана,
Вавилова Ирина
ученицы 10 класса А
МОУ Гимназии № 18
Научный руководитель: Тюменцева Любовь Ивановна

Описание слайда:

Углеводы
Углеводы – органические вещества, молекулы которых состоят из атомов углерода, водорода и кислорода, причем водород и кислород находятся в них, как правило, в таком же соотношении, как и в молекуле воды (2:1).
Общая формула углеводов – Cn(H2O)m, т.е. они как бы состоят из углерода и воды, отсюда и название класса, которое имеет исторические корни.
Углеводы можно разделить на три основные группы: моносахариды, дисахариды и полисахариды.

Описание слайда:

Моносахариды
Моносахариды – углеводы, которые не подвергаются гидролизу. В свою очередь, в зависимости от числа атомов углевода моносахариды подразделяются на триозы, тетрозы, пентозы, гексозы и т. д.
В природе моносахариды представлены преимущественно пентозами и гексозами.
К гексозам, имеющим общую молекулярную формулу С6Н12О6, относят, например, фруктозу и глюкозу.

Описание слайда:

Дисахариды
Дисахариды – углеводы, которые гидролизуются с образованием двух молекул моносахаридов, например гексоз.
К дисахаридам относится: сахароза, мальтоза, лактоза.
Сладкий вкус разных моно- и дисахаридов различен. Так, самый сладкий моносахарид – фруктоза – в полтора раза слаще глюкозы, которую принимают за эталон.

Описание слайда:
Описание слайда:

Серная кислота
Серная кислота – один из основных продуктов химической промышленности.
Специфические свойства концентрированной серной кислоты:
Концентрированная серная кислота – сильный окислитель: при нагревании она реагирует почти со всеми металлами (исключение Au, Pt и некоторые другие). В этих реакциях в зависимости от активности металла и условий выделяется SO2, H2S, S.
Концентрированная серная кислота энергично реагирует с водой с образованием гидратов.
Концентрированная серная кислота отщепляет от органических веществ водород и кислород в виде воды, обугливая их.

Описание слайда:

Явление дегидратации углеводов хорошо известно на примере обугливания сахара под действием концентрированной серной кислоты. Данная реакция является характерной для углеводов. Серная кислота аналогичным образом действует на другие углеводсодержащие продукты и углеводы. Скорость протекания реакции и внешние признаки определяются типом углевода.

Описание слайда:

Цель исследования:
Определение зависимости скорости дегидратации углеводов от условий протекания реакции.
Задачи исследования:
Познакомиться со специфическими свойствами концентрированной серной кислоты.
Выяснить как концентрированная серная кислота и раствор воздействует на углеводы.
Объекты исследования:
Сахароза, фруктоза, галактоза, лактоза, глюкоза, крахмал, мед, попкорн, мука пшеничная, белый хлеб, спагетти.

Описание слайда:

Методика эксперимента
В стакан на 50 или 100 мл помещали 10 г образца углевода или углеводсодержащего продукта, добавляли 10 мл концентрированной серной кислоты и аккуратно размешивали до образования однородной массы.
Из соображений безопасности стакан устанавливали в чашу с песком.
Через некоторое время появляются признаки реакции: смесь приобретает желтоватый оттенок, затем темнеет и становится черной, вслед за этим начинается вспенивании: в стакане образуется пористый углеродистый столб черного цвета.
Cn(H2O)m+H2SO4 → nCn+H2SO4*mH2O

Описание слайда:

Практическая работа
Исследуя зависимость скорости дегидратации от условий протекания реакции, в стакан перед добавлением серной кислоты помещали определенный объем воды. В процессе выполнения опыта фиксировали характерные кинетические параметры реакции: t(1) – время появления первых признаков почернения и t(2) – время, когда высота углеродистого столба достигает отметки 100 или 50 мл на стакане.
Оборудование и материалы:
концентрированная серная кислота, дистиллированная вода, образцы углеводов, стаканы на 50-100 мл, чашки Петри, стеклянные палочки, секундомер, учебно-лабораторный комплекс, резиновые перчатки, защитные очки, халат, песок, питьевая сода (NaHCO3).

Описание слайда:

Кинетические параметры дегидратации углеводов (1)

Описание слайда:

сахароза лактоза глюкоза

Описание слайда:

Кинетические параметры дегидратации углеводов(2)

Описание слайда:
Описание слайда:

Результаты исследования
В таблице 1и 2 приведены результаты, полученные при дегидратации ряда углеводов в разных ситуациях. Параметры t(1) и t(2) довольно индивидуальны для каждого углевода, однако использовать их не посредственно для идентификации разных сахаров затруднительно, так как кинетика реакции во многом определяется исходной формой реагента и количеством добавляемой воды. Например, в случае сахарозы наибольшая скорость разложения достигается для сахарной пудры, увеличение объема воды сначала повышает скорость реакции, а затем (свыше 50 мл) снижает ее до нуля.

Описание слайда:

Исследование основано на том, что разные углеводы обугливаются серной кислотой с разной скоростью, поэтому можно не только подтвердить химические свойства углеводов, но данная реакция может стать методом распознавания разных представителей этого класса, а также способом исследования зависимости скорости реакции от природы вещества и условий проведения процесса.
При обугливании углеводов концентрированной серной кислотой выделяется большое количество теплоты. Мы произвели замер температуры реакции фруктозы с кислотой, получили следующие результаты:

Описание слайда:

Выводы
Дегидратация сахаров зрелищна и эффектна.
Мы научились экспериментально определять простейшие кинетические характеристики при обугливании углеводов.
С помощью полученных результатов можно практически распознавать углеводы.
Нужно учитывать, что концентрированная серная кислота очень опасна и при работе с ней нужно быть предельно осторожными.

Описание слайда:

Техника безопасности:
Опыт выполняется в защитных очках и резиновых перчатках. Если пена выходит за пределы стакана, необходимо накрыть его сверху большим стаканом. Для нейтрализации остатков кислоты реакционную смесь помещают в большую емкость и обрабатывают небольшими порциями гидрокарбоната натрия (на 40 мл концентрированной серной кислоты – около 121 г питьевой соды).

Описание слайда:

Список литературы:
1. Артеменко А. И. Органическая химия. М.: Высшая школа, 2001.
2.Головнер В. Н. Химия. Интересные уроки. Из зарубежного опыты преподавания. 8-11 классы. М.: НЦ ЭНАС, 2002.
3. Карцова А. А. Покорение вещества. Органическая химия. СП.: Химиздат, 1999.
4. Цветков Л.А. Эксперимент по органической химии в средней школе. Методика и техника. М.: Школьная пресса, 2000.

Описание слайда:

Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.

сахароза обугливается концентрированной серной кислотой о чем свидетельствует этот опыт. Смотреть фото сахароза обугливается концентрированной серной кислотой о чем свидетельствует этот опыт. Смотреть картинку сахароза обугливается концентрированной серной кислотой о чем свидетельствует этот опыт. Картинка про сахароза обугливается концентрированной серной кислотой о чем свидетельствует этот опыт. Фото сахароза обугливается концентрированной серной кислотой о чем свидетельствует этот опыт

Курс повышения квалификации

Охрана труда

сахароза обугливается концентрированной серной кислотой о чем свидетельствует этот опыт. Смотреть фото сахароза обугливается концентрированной серной кислотой о чем свидетельствует этот опыт. Смотреть картинку сахароза обугливается концентрированной серной кислотой о чем свидетельствует этот опыт. Картинка про сахароза обугливается концентрированной серной кислотой о чем свидетельствует этот опыт. Фото сахароза обугливается концентрированной серной кислотой о чем свидетельствует этот опыт

Курс профессиональной переподготовки

Библиотечно-библиографические и информационные знания в педагогическом процессе

сахароза обугливается концентрированной серной кислотой о чем свидетельствует этот опыт. Смотреть фото сахароза обугливается концентрированной серной кислотой о чем свидетельствует этот опыт. Смотреть картинку сахароза обугливается концентрированной серной кислотой о чем свидетельствует этот опыт. Картинка про сахароза обугливается концентрированной серной кислотой о чем свидетельствует этот опыт. Фото сахароза обугливается концентрированной серной кислотой о чем свидетельствует этот опыт

Курс профессиональной переподготовки

Охрана труда

Ищем педагогов в команду «Инфоурок»

Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:

также Вы можете выбрать тип материала:

Общая информация

Похожие материалы

Номенклатура алканов разветвлённого строения

Решение задач с использованием массовой доли выхода продукта

Азотная кислота – HNO3 – взрывоопасная царская особа»

Алкадиены

Алкены

Влияние пищевых добавок на здоровье человека

Фуллерены. Квазикристаллы. Использование кристаллов

Углеводы. Решение задач (10 класс)

Не нашли то что искали?

Воспользуйтесь поиском по нашей базе из
5354509 материалов.

Вам будут интересны эти курсы:

Оставьте свой комментарий

Авторизуйтесь, чтобы задавать вопросы.

Безлимитный доступ к занятиям с онлайн-репетиторами

Выгоднее, чем оплачивать каждое занятие отдельно

сахароза обугливается концентрированной серной кислотой о чем свидетельствует этот опыт. Смотреть фото сахароза обугливается концентрированной серной кислотой о чем свидетельствует этот опыт. Смотреть картинку сахароза обугливается концентрированной серной кислотой о чем свидетельствует этот опыт. Картинка про сахароза обугливается концентрированной серной кислотой о чем свидетельствует этот опыт. Фото сахароза обугливается концентрированной серной кислотой о чем свидетельствует этот опыт

сахароза обугливается концентрированной серной кислотой о чем свидетельствует этот опыт. Смотреть фото сахароза обугливается концентрированной серной кислотой о чем свидетельствует этот опыт. Смотреть картинку сахароза обугливается концентрированной серной кислотой о чем свидетельствует этот опыт. Картинка про сахароза обугливается концентрированной серной кислотой о чем свидетельствует этот опыт. Фото сахароза обугливается концентрированной серной кислотой о чем свидетельствует этот опыт

К 2024 году в каждой российской школе должен появиться спортивный клуб

Время чтения: 2 минуты

сахароза обугливается концентрированной серной кислотой о чем свидетельствует этот опыт. Смотреть фото сахароза обугливается концентрированной серной кислотой о чем свидетельствует этот опыт. Смотреть картинку сахароза обугливается концентрированной серной кислотой о чем свидетельствует этот опыт. Картинка про сахароза обугливается концентрированной серной кислотой о чем свидетельствует этот опыт. Фото сахароза обугливается концентрированной серной кислотой о чем свидетельствует этот опыт

В Ленобласти педагоги призеров и победителей олимпиады получат денежные поощрения

Время чтения: 1 минута

сахароза обугливается концентрированной серной кислотой о чем свидетельствует этот опыт. Смотреть фото сахароза обугливается концентрированной серной кислотой о чем свидетельствует этот опыт. Смотреть картинку сахароза обугливается концентрированной серной кислотой о чем свидетельствует этот опыт. Картинка про сахароза обугливается концентрированной серной кислотой о чем свидетельствует этот опыт. Фото сахароза обугливается концентрированной серной кислотой о чем свидетельствует этот опыт

В России будут создавать школьные театры

Время чтения: 1 минута

сахароза обугливается концентрированной серной кислотой о чем свидетельствует этот опыт. Смотреть фото сахароза обугливается концентрированной серной кислотой о чем свидетельствует этот опыт. Смотреть картинку сахароза обугливается концентрированной серной кислотой о чем свидетельствует этот опыт. Картинка про сахароза обугливается концентрированной серной кислотой о чем свидетельствует этот опыт. Фото сахароза обугливается концентрированной серной кислотой о чем свидетельствует этот опыт

Учителям предлагают 1,5 миллиона рублей за переезд в Златоуст

Время чтения: 1 минута

сахароза обугливается концентрированной серной кислотой о чем свидетельствует этот опыт. Смотреть фото сахароза обугливается концентрированной серной кислотой о чем свидетельствует этот опыт. Смотреть картинку сахароза обугливается концентрированной серной кислотой о чем свидетельствует этот опыт. Картинка про сахароза обугливается концентрированной серной кислотой о чем свидетельствует этот опыт. Фото сахароза обугливается концентрированной серной кислотой о чем свидетельствует этот опыт

Путин поручил не считать выплаты за классное руководство в средней зарплате

Время чтения: 1 минута

сахароза обугливается концентрированной серной кислотой о чем свидетельствует этот опыт. Смотреть фото сахароза обугливается концентрированной серной кислотой о чем свидетельствует этот опыт. Смотреть картинку сахароза обугливается концентрированной серной кислотой о чем свидетельствует этот опыт. Картинка про сахароза обугливается концентрированной серной кислотой о чем свидетельствует этот опыт. Фото сахароза обугливается концентрированной серной кислотой о чем свидетельствует этот опыт

Комиссия РАН призвала отозвать проект новых правил русского языка

Время чтения: 2 минуты

Подарочные сертификаты

Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.

Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.

Источник

Методика и техника пособие для учителей

САХАРОЗА

Изменение сахара при нагревании. Опыты нагревания сахара могут быть поставлены как в виде демонстрации, так и в виде домашней работы учащихся.

Нагревают в пробирке или фарфоровой чашке толченый сахар до плавления (160°С). Выливают часть расплава на бумагу. По мере остывании образуется леденец.

При более сильном нагревании (до 200°С и выше) сахар окрашивается в желтый цвет, при этом образуется карамель. Если са

хар нагревают далее, он еще более темнеет и наконец обугливается, выделяя белый дым: сухая перегонка. Выделяющиеся газообразные продукты можно поджечь. Легко можно составить коллекцию разнообразных продуктов, образующихся при нагревании сахара. При всяком изменении окраски часть расплава отливают в маленькую пробирочку, где он и застывает. Пробирочки монтируют на щитке в порядке углубления окраски сахара.

В небольшом химическом стакане смачивают водой 10 г толченого сахара и прибавляют равный объем концентрированной серной кислоты. Через непродолжительное время сахар начинает обугливаться и сильно вспучиваться за счет выделения газов (СО2 и SO2). Если черная масса станет выходить из стакана, его следует поставить в кристаллизатор.

а) Взаимодействие с гидроксидом меди (II). В демонстрационной пробирке или химическом стакане получают небольшое количество гидроксида меди (II) взаимодействием растворов медного купороса и едкого натра. Приливают к осадку раствор сахарозы. Образуется синий раствор сахарата меди.

б) Взаимодействие с гидроксидом кальция. С гидроксидом кальция сахароза образует растворимые в воде сахараты (например, С12Н22О11• СаО), дающие при нагревании осадок трисахарата С12Н22О11 • ЗСаО и разрушающиеся при пропускании углекислого газа. Образование растворимых сахаратов и разрушение их углекислым газом лежат в основе технического извлечения сахара из свеклы.

К 20-процентному раствору сахара прибавляют постепенно известковое молоко (не известковую воду!), постоянно перемешивая жидкость. Гидроксид кальция при этом растворяется.

Чтобы показать, что растворение извести происходит вследствие образования сахарата, ставят параллельный опыт: приливают такое же примерно количество известкового молока к воде того же объема, что и взятый раствор сахара. Заметного растворения мути в этом случае не наблюдается.

После того как растворение извести в растворе сахара прекратится, сливают прозрачный раствор (при необходимости фильтруют) и делят его на две части.

Одну часть нагревают до кипения: образующийся трехкальцие-вый сахарат выпадает в осадок

Во вторую часть раствора пропускают углекислый газ и наблюдают образование осадка карбоната кальция.

Опыт можно провести более быстро, если к раствору сахара сразу прилить избыток известкового молока, отфильтровать раствор сахарата, разделить его на 2 части и затем поступить, как указано выше.

^ Отношение сахарозы к раствору оксида серебра и гидроксида меди (II ). К аммиачному раствору оксида серебра прибавляют раствор сахарозы и поступают, как указано для альдегидов. Восстановление серебра не наблюдается.

К раствору сахарозы прибавляют половинный объем раствора едкого натра и затем немного раствори сульфата меди (II). При нагревании смеси красный осадок оксида меди (I) не образуется.

Гидролиз сахарозы. Известно, что в обычных условиях гидролиз сахарозы идет очень медленно. Скорость его сильно возрастает при действии катализаторов (энзимов или кислот). Продуктами гидролиза сахарозы являются глюкоза и фруктоза:

а) В две демонстрационные пробирки помещают по кусочку пиленого сахара, растворяют сахар в равных объемах воды (примерно в 15 мл). В одну из пробирок добавляют 1 мл раствора соляной кислоты. Содержимое обеих пробирок кипятят в течение 3-5 мин. После этого нейтрализуют кислоту щелочью и оба раствора испытывают на реакцию восстановления гидроксида меди (II).

Раствор, где кипячение производилось в присутствии кислоты, восстанавливает Сu(ОН)2 в Сu2О. В нем. следовательно, прошел гидролиз с образованием моносахаридов. Кипячение же без катализатора оказалось недостаточным для гидролиза.

б) Гидролизом сахарозы с кислотой можно получить искусственный мед, так как мед представляет собой в основном смесь тех же продуктов (глюкозы и фруктозы), которые образуются при гидролизе сахарозы.

Пять кусочков пиленого сахара растворяют в небольшом количестве воды, добавляют 0,5-1 мл разбавленной химически чистой серной кислоты и нагревают на водяной бане в течение часа. Затем раствор охлаждают, нейтрализуют кислоту мелом (при нейтрализации щелочью в растворе осталась бы соль), добавляя порошок его мелкими порциями, пока не перестанет выделяться углекислый газ, и отфильтровывают осадок сульфата кальция. Раствор упаривают на водяной бане до состояния сиропа, не давая ему при этом подгорать, и пробуют на вкус.

В опыте не следует брать много кислоты, так как каталитичес-

кое действие ее от этого почти не изменяется, а избыток ее разрушает фруктозу.

в) Получение искусственного меда можно упростить, если в качестве катализатора воспользоваться кислотой, не требующей дальнейшей нейтрализации и фильтрования.

К 100 мл водного раствора сахара, имеющего вид негустого сиропа, прибавляют примерно 1 г лимонной кислоты и нагревают раствор на водяной бане в течение 30-40 мин. Получающаяся смесь глюкозы и фруктозы напоминает по вкусу мед. Для придания ей аромата можно прибавить немного натурального меда.

а) 400—500 г сахарной свеклы хорошо промывают и нарезают в виде мелкой стружки или истирают на терке. Свеклу помещают в большой химический стакан, добавляют к ней равное количество горячей воды и смесь нагревают полчаса при 70—80″С. Полученный раствор сливают, а к свекле добавляют новую порцию горячей воды и снова нагревают. Через тот же промежуток времени образовавшийся раствор прибавляют к ранее полученному и ту же операцию проделывают в третий раз. Так, применяя всякий раз чистую воду, удается полнее извлечь сахар из свеклы, чем при однократной обработке свеклы большим количеством воды.

Полученный сок фильтруют от посторонних примесей через ткань. Готовят известковое молоко из 15 г оксида кальция и добавляют его к свекловичному соку. Смесь нагревают в течение 15 — 20 мин (на водяной бане). При этом под действием извести происходит осаждение органических кислот, белковых и других органических веществ, а сахар остается в виде сахарата в растворе.

Далее раствор фильтруют в другую колбу и пропускают в него углекислый газ. При этом сахарат разлагается: известь в виде карбоната выпадает в осадок, а сахар в свободном виде остается в растворе. Пропускание углекислого газа продолжают с таким расчетом, чтобы раствор остался слабощелочным (при нанесении капли раствора на фильтровальную бумажку, смоченную фенолфталеином, бумажка должна окраситься в бледно-розовый цвет). Это дает гарантию, что несахаристые вещества, находящиеся в соединении с известью, при этом не будут разложены.

Полученный раствор, содержащий иногда до 10% сахара, имеет желтоватый цвет. Обесцвечивают его фильтрованием через свежепрокаленный уголь.

Пробу раствора подвергают гидролизу (кипячение с небольшим количеством H24) и открывают глюкозу реакцией с гидроксидом меди (II).

После этого раствор упаривают на водяной бане (желательно в вакууме, чтобы не было подгорания сахара) до уменьшения объема примерно в 5 раз и оставляют кристаллизоваться. Для затравки можно бросить в раствор несколько крупинок сахарного песка.

Чтобы получить наиболее чистый продукт, выделившийся сахар следует перекристаллизовать. Для этого его отделяют от патоки, кристаллы растворяют в очень небольшом количестве горячей воды и оставляют в кристаллизаторе до следующего занятия или осторожно выпаривают до образования кристаллов, не доводя при этом раствор до полного обезвоживания.

Принцип конструирования учащимися «производственной установки» заключается в том, чтобы не переливать в работе растворы из одной колбы в другую, а последовательно соединить ряд колб, чтобы растворы можно было перекачивать из одного сосуда в другой с помощью пульверизационной груши (пуская их в случае необходимости предварительно на фильтр).

б) Получение сахара из свеклы можно осуществить проще, если процесс извлечения его водой вести при обычной температуре. В таком случае несахаристые вещества в значительной степени удерживаются волокнами клеток и очистка сока упрощается.

500 г промытой свеклы протирают на терке и затем еще растирают в фарфоровой ступке до состояния пасты. Переносят пасту в большую колбу и приливают к ней 500 мл 15-процентного взмученного известкового молока. Закрыв колбу пробкой, встряхивают содержимое время от времени в течение нескольких часов. При этом происходит одновременно извлечение сахара из свеклы. Затем отжимают свеклу через ткань, собирая сок в стакан. Выжимки с ткани переносят в ту же колбу, добавляют 300 г воды и через некоторое время вновь отжимают. Обе порции сока соединяют и пропускают в него углекислый газ до полного осаждения извести. Сначала сок фильтруют на установке под вакуумом, а затем, если он имеет желтоватый вид, через слой активированного угля. Этот сок упаривают на водяной бане до уменьшения объема раствора примерно в 5—7 раз и оставляют кристаллизоваться. В качестве затравки в раствор можно поместить несколько крупинок сахарного песка.

Учащиеся должны познакомиться со свойствами крахмала, так как он является важнейшим углеводом в питании человека. Доступность этого вещества для школьной лаборатории позволяет осуществить с ним богатую серию опытов.

Для растворения крахмала в горячей воде неудобно нагревать полученную в предыдущем опыте смесь его с водой, так как оседающий на дно плотный слой крахмала вызывает перегрев стекла, вследствие чего пробирка может лопнуть. Поэтому опыт ставят по одному из следующих вариантов:

1. В ступке или фарфоровой чашке растирают немного крахмала с небольшим количеством воды, переносят смесь в пробирку, разбавляют водой и нагревают до кипения при постоянном перемешивании.

2. В 4—5 мл воды взмучивают небольшую щепотку крахмала и образующуюся суспензию понемногу выливают в другую пробирку или стаканчик с кипящей водой. Образующийся раствор при этом постоянно перемешивают. Убеждаются, что в обоих случаях крахмал не осаждается на дно пробирки, а образует коллоидный раствор, который называется крахмальным клейстером.

Так как иод почти нерастворим в воде, то для опытов используют спиртовой раствор или водный, но с иодидом калия (с которым иод дает комплексное соединение). В первом случае можно воспользоваться йодной тинктурой (приобретенной в аптеке), разбавив ее водой примерно в 20 раз (иод в присутствии спирта останется в растворе). Во втором случае готовят раствор из расчета 100 мл воды, 2—3 г иодида калия и 1 г йода.

1. В демонстрационный цилиндр наливают 3—5 мл полученного в предыдущем опыте клейстера, разбавляют его водой (1 : 20) и добавляют немного раствора йода. Наблюдается появление синей окраски (белый фон!).

Часть синего раствора наливают в другую демонстрационную пробирку и нагревают. При нагревании синяя окраска исчезает, так как образующееся соединение крахмала с йодом неустойчиво. При охлаждении раствора синяя окраска вновь появляется.

2. Учащимся может быть дано задание определить порог чувствительности данной реакции. Для этого они из навески промытого водой на фильтре и высушенного крахмала готовят крахмальный клейстер. Вычисляют, сколько крахмала содержится в каждом миллилитре клейстера. Отбирая пробы клейстера и разбавляя их разными объемами воды, вычисляют, при какой концентрации крахмала синяя окраска становится едва уловимой.

На присутствие крахмала могут быть проверены: картофельная мука, картофель (сырой в тонком срезе и вареный), обычная мука, белый хлеб, зеленое яблоко, пудра, рис и т.д.

Поэтому демонстрация гидролиза должна быть проведена по крайней мере в двух вариантах: с помощью минерального катализатора <серной кислоты) и с помощью ферментов.

В том, что крахмал подвергается гидролизу, можно убедиться как по исчезновению крахмала (отсутствие синего окрашивания с йодом), тик и по появлению глюкозы (восстановление гидроксида меди).

Гидролиз крахмала идет через образование целого ряда промежуточных продуктов. Конечным продуктом гидролиза крахмала является глюкоза. Учащимся дается только итоговое уравнение реакции:

Чтобы дли обнаружения глюкозы не получать каждый раз гидроксид меди (II), пользуются раствором Фелинга.

Кратко разъясняем учащимся, что фелингова жидкость представляет собой в основном гидроксид меди (II), но он находится здесь благодаря присутствию сегнетовой соли в растворенном состоянии, вследствие чего при нагревании не образуется оксид меди (II), загрязняющий осадок.

Уравнение реакции раствора Фелинга с альдегидами пишется, как и для гидроксида меди (II), согласно схеме:

Приготовление фелинговой жидкости: а) в 100 мл воды растворяют 3,5 г медного купороса (крист); б) в 100 мл воды растворяют 17,3 г сегнетовой соли (крист.) и 6 г едкого натра. Растворы хранят отдельно. Перед уроком получают нужное количество жидкости, смешивая равные объемы растворов.

Чтобы в дальнейших опытах раствор крахмала до гидролиза не дал реакции с фелинговой жидкостью, крахмал предварительно следует промыть на фильтре водой.

а) В химическом стаканчике разбавляют 5—8 мл крахмального клейстера тройным объемом воды и прибавляют 1—2 мл раствора серной кислоты.

На небольших пробах убеждаются, что раствор содержит крахмал (реакция с йодом) и не содержит глюкозы (отсутствие реакции с фелинговой жидкостью после нейтрализации кислоты щелочью).

Кипятят раствор в стаканчике в течение 5 мин, затем отбирают пробу, нейтрализуют ее щелочью и нагревают с раствором Фелинга. Образование красного оксида меди (I) указывает на появление глюкозы. Реакцией с йодом проверяют, прошел ли полностью гидролиз крахмала. Если крахмал обнаруживается, то продолжают кипятить раствор до тех пор, пока проба его не перестанет давать синюю окраску с йодом. Чтобы не тратить времени на охлаждение каждой пробы, можно несколько капель его вносить в значительный объем раствора йода.

б) Споласкивают рот 2—3 раза водой. Раствор слюны каждый раз переносят в небольшой стаканчик. Приливают туда же равный объем крахмального клейстера, добавляют фелингову жидкость и смесь нагревают. Образуется красный оксид меди (I). Параллельно можно убедиться, что ни крахмал, ни слюна при нагревании с фелинговым раствором в отдельности оксида меди (I) не образуют.

Строго говоря, при действии фермента слюны (амилазы) крахмал гидролизуется не до глюкозы, а до дисахарида мальтозы. Однако нет необходимости фиксировать внимание учащихся на этой детали, тем более что мальтоза, подобно глюкозе, восстанавливает гидроксид меди (II).

в) В штатив помещают 6 пробирок с раствором йода. В химическом стакане готовят смесь крахмального клейстера, воды и серной кислоты, как указано выше. Две-три капли смеси переносят пипеткой в первую пробирку с раствором йода. Затем начинают

кипятить смесь в стаканчике и отбирают пробы через каждые две-три минуты, внося их в следующие пробирки. В пробирках образуется гамма окрасок: синяя, фиолетовая, красно-бурая; в последней пробирке (или в последних) окраска раствора не изменяется. Полученные окраски соответствуют различным декстринам, образующимся в процессе постепенного гидролиза крахмала. Наиболее простые декстрины, так же как мальтоза и глюкоза, вовсе не окрашиваются йодом.

С помощью раствора Фелинга убеждаются, что жидкость, остающаяся после отбора вышеуказанных проб, содержит глюкозу.

г) Подобным же способом можно проследить последовательность гидролиза крахмала под действием амилазы слюны. В химическом стаканчике смешивают немного слюны с крахмальным клейстером и через каждые 1-2 мин (без нагревания) вносят пробы этой смеси в раствор йода. Наблюдают аналогичный результат.

В круглодонную колбу емкостью 500—1000 мл наливают 100 мл воды и 2 мл концентрированной серной кислоты. Нагревают раствор кислоты до кипения и к нему очень медленно, следя за тем, чтобы не прерывалось кипячение, приливают взмученную смесь 25 г крахмала с небольшим количеством воды. В колбе образуется крахмальный клейстер. Колбу закрывают пробкой с обратным воздушным холодильником и кипятят около часа. После того как проба жидкости из колбы перестанет давать окраску с раствором йода, процесс гидролиза можно считать законченным.

Чтобы выделить глюкозу из раствора, следует предварительно удалить примесь серной кислоты. Для этого к охлажденному раствору добавляют небольшими порциями тонко измельченный мел (карбонат кальция) до прекращения выделения углекислого газа, сильно взбалтывая всякий раз реакционную смесь. Когда при добавлении новой порции мела не будет слышно характерного шипения, серная кислота оказывается нейтрализованной. Для нейтрализации кислоты можно воспользоваться также известковым молоком. Затем отделяют осадок сульфата кальция фильтрованием через складчатый фильтр или на воронке Бюхнера и упаривают раствор глюко-

зы в фарфоровой чашке на водяной бане. При концентрировании раствора может снова выпасть осадок гипса. Осадок снова отфильтровывают и продолжают упаривание раствора до густоты сиропа. Образовавшийся густой сироп (патоку) можно попробовать на вкус и испытать фелинговым раствором и раствором йода.

Полученную глюкозу можно подвергнуть брожению.

Из «крахмального молока» примерно в течение часа отстаивается осадок крахмала. Декантируют с осадка водный раствор и крахмал дважды промывают чистой водой, всякий раз тщательно перемешивая и давая осесть крахмалу.

Промывку крахмала следует делать потому, что остающиеся в нем примеси темнеют на воздухе и окрашивают его в грязный цвет.

Наконец крахмал отделяют от воды (декантацией или фильтрованием) и сушат на воздухе. Проверяют его на хруст, растирая между пальцами, готовят немного крахмального клейстера и испытывают раствором йода.

Подобную работу в большем масштабе учащиеся могут с пользой выполнить в домашних условиях.

Основная идея опытов по данному разделу — показать разнообразные применения клетчатки, основанные на использовании ее химических свойств. В связи с этим опыты подразделяются па три основные группы: а) гидролиз клетчатки, вскрывающий принадлежность ее к классу углеводов и иллюстрирующий основной процесс современной гидролизной промышленности; б) нитрование клетчатки, показывающее использование ее для производства взрывчатых веществ.

Из сказанного видно, что материал данного раздела имеет существенное значение для практического ознакомления учащихся с научными основами современных химических производств.

Конечным продуктом гидролиза клетчатки, как и крахмала, является глюкоза:

Гидролиз клетчатки также катализируется минеральными кислотами.

В настоящее время в промышленности гидролизом клетчатки (преимущественно древесины) и последующим сбраживанием образующейся глюкозы получают этиловый спирт и другие продукты.

Опыты по гидролизу могут ставиться с различной полнотой: от констатации наличия глюкозы в гидролизате до извлечения глюкозы в твердом виде.

а) В ступке смачивают кусочек чистой фильтровальной бумаги или ваты концентрированной серной кислотой и растирают пестиком. Полученный раствор переносят в демонстрационную пробирку или химический стакан с небольшим количеством воды (2-3 мл) и кипятят в течение 5 мин. После этого часть раствора нейтрализуют щелочью и нагревают с фелинговой жидкостью. Образование красного оксида меди (I) указывает на появление глюкозы.

Параллельно можно провести контрольный опыт: кипятить столько же времени фильтровальную бумагу или вату с водой без кислоты. При последующем нагревании этой жидкости с фелинговым раствором осадок оксида меди (I) не образуется.

б) Для демонстрации процесса гидролиза клетчатки можно воспользоваться древесными опилками. Этот опыт будет поучительнее предыдущего, так как с большим приближением иллюстрирует современное гидролизное производство.

1—2 г древесных опилок смачивают в химическом стакане водой, прибавляют 2—3 мл концентрированной серной кислоты, затем 30—50 мл воды и кипятят 8—10 мин. После этого часть еще горячего раствора фильтруют через складчатый фильтр, фильтрат нейтрализуют щелочью и нагревают с фелинговым раствором. Образуется красный оксид меди (1).

Параллельно может быть поставлен опыт нагревания опилок с водой без кислоты. Получающийся в этом случае раствор не дает с фелинговой жидкостью оксид меди (I).

Время, в течение которого идет кипячение смеси опилок с кислотой, может быть использовано для разъяснения учащимся сущности гидролизного производства и его значения.

в) Предыдущие опыты дают представление о реакции гидролиза клетчатки и о получаемом продукте, но еще не знакомят с основными стадиями гидролизного производства. Как показала практика, в школьных условиях можно поставить опыт, более полно отражающий промышленный способ осахаривания древесины.

Ввиду длительного времени некоторые операции опыта (нейтрализация кислоты и фильтрование) можно выполнить вне урока.

Наиболее распространенный в промышленности способ осахаривания древесины состоит в нагревании ее с очень разбавленной серной кислотой (0,5%) под давлением до 10 ат. В школе, естественно, нельзя поставить опыт с применением автоклава, да в этом и нет особой необходимости, так как не ставится задача получения максимально возможного выхода глюкозы. Зато можно несколько повысить концентрацию серной кислоты, чтобы ускорить процесс.

К 1-1,5 г древесных опилок в колбе прибавляют 14 мл серной кислоты (6 мл воды и 8 мл концентрированной серной кислоты). Смесь встряхивают примерно в течение 10 мин, одновременно прогревая ее немного в пламени спиртовки. Затем к ней приливают 150—200 мл воды, закрывают колбу пробкой с обратным холодильником и кипятят в течение 10-15 мин.

Раствор фильтруют в большую коническую колбу. К фильтрату добавляют небольшими порциями тонко измельченный мел, все время энергично круговыми движениями перемешивая смесь до тех пор, пока не прекратится выделение углекислого газа (шипение) и лакмусовая бумажка не покажет, что серная кислота нейтрализована:

Вместо мела можно применить известковое молоко или баритовую воду.

Раствор фильтруют от обильного осадка сульфата кальция. С помощью фелингова раствора убеждаются в наличии глюкозы в фильтрате. Упаривают раствор в фарфоровой чашке на водяной бане до небольшого объема жидкости.

Так как фильтрование и упаривание занимают много времени, то эта часть опыта может быть поставлена в двух вариантах: учащимся сообщается, что эти операции будут выполнены после урока и на следующем занятии из концентрированного раствора будет извлечен сахар, или же берется упаренный раствор, заранее подготовленный учащимися в кружке. Второй путь более удобный, так как не нарушает логической стройности урока и ведет к лучшим результатам. Последнее объясняется тем, что в процессе внеклассной работы учащиеся могут продолжительное время обрабатывать опилки слабо разбавленной кислотой (от 2 ч до суток) и длительное время кипятить их с сильно разбавленной кислотой (до 2 ч), что приведет к большему выходу продукта.

Сконцентрированный раствор глюкозы выпаривают в фарфоровой чашке на водяной бане. При этом следят за тем, чтобы выделяющийся сахар по возможности не подгорал. На дне чашки по мере испарения воды образуется немного глюкозы, обычно светло-желтого цвета (вследствие частичного разложения органических примесей). Полученный продукт можно испробовать на вкус — учащиеся убеждаются в его сладком вкусе. В классе ощущается запах горелого сахара, так как при выпаривании без вакуума не удается избежать частичного разложения. Растворив полученный продукт в воде и добавив дрожжей, в соответствующих условиях можно наблюдать реакцию брожения (по выделению углекислого газа), что подтверждает образование сахара из древесины.

сахароза обугливается концентрированной серной кислотой о чем свидетельствует этот опыт. Смотреть фото сахароза обугливается концентрированной серной кислотой о чем свидетельствует этот опыт. Смотреть картинку сахароза обугливается концентрированной серной кислотой о чем свидетельствует этот опыт. Картинка про сахароза обугливается концентрированной серной кислотой о чем свидетельствует этот опыт. Фото сахароза обугливается концентрированной серной кислотой о чем свидетельствует этот опыт

В случае применения азотной кислоты удельного веса 1,4 нитрование обычно не доходит до образования тринитроклетчатки. Однако с полученным продуктом удается проделать все необходимые опыты, иллюстрирующие свойства нитроклетчатки.

В химическом стаканчике готовят смесь 5 мл концентрирован-

ной азотной кислоты (уд. вес 1,4) и 10 мл концентрированной серной кислоты (уд. вес 1,84). После того как смесь примет комнатную температуру, в нее погружают минут на 10—15 комочек ваты, перемешивая его с кислотами стеклянной палочкой. Затем вату промывают водой в большом химическом стакане и в струе под водопроводным краном. После этого нитроклетчатку отжимают и высушивают в листах фильтровальной бумаги, неоднократно меняя их и разрыхляя каждый раз вату.

Полного высушивания нитрованной ваты на уроке не достичь; однако дальнейшие опыты удаются и со слегка влажной нитроклетчаткой. Можно также взять для опытов ранее заготовленную нитроклетчатку.

а) Горение нитроклетчатки. В пламени спиртовки поджигают одновременно небольшой комочек ваты и полученного нитропродукта (взятые в щипцы). Первый образец горит медленно, второй сгорает моментально.

Головку одной спички обертывают ватой, другой спички — нитроклетчаткой. Вату и нитроклетчатку поджигают. Вслед за горением ваты спичка вспыхивает, нитроклетчатка же сгорает настолько быстро, что спичка не успевает воспламениться.

Изучению аминов в курсе органической химии предшествует изучение нитросоединений. Оно проводится преимущественно в плане обобщения, так как с отдельными представителями этого класса веществ учащиеся знакомились ранее. В связи с этим опыты для изучения нитробензола, пикриновой кислоты и других нитросоединений описаны в предыдущих главах и здесь не приводятся.

Опыты с алифатическими (жирными) аминами ниже даны сравнительно в небольшом количестве, так как эти соединения совершенно не рассматриваются в курсе химии или о них сообщаются лишь краткие сведения.

Красители, даже самые простейшие, обычно не изучаются в школе. Однако, учитывая большое образовательное значение знакомства с ними и высокий интерес учащихся к синтетической химии, ниже мы даем серию опытов для внеклассной работы

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *