система теплофикации что такое
Теплофикация
Теплофикация – комбинированная выработка на ТЭС электроэнергии и теплоты для бытовых и технологических нужд за счет отбора и использования отработавшего пара на базе централизованного теплоснабжения.
Имеется возможность повысить эффективность паросиловой установки путем увеличения, а не уменьшения давления и температуры за турбиной до такой величины, чтобы отбросную теплоту (которая составляет более половины всего количества теплоты, затраченной в цикле) можно было использовать для отопления, горячего водоснабжения и различных технологических процессов (рис. 1.28).
Рис. 1.28. Схема установки для совместной выработки тепловой и электрической энергии:
Рис. 1.29. Теплофикационный цикл в Т-s диаграмме
С этой целью охлаждающая вода, нагретая в конденсаторе К, не выбрасывается в водоем, как в чисто конденсационном цикле, а прогоняется через отопительные приборы теплового потребителя ТП. Охлаждаясь в них, отдает полученную в конденсаторе теплоту. В результате станция, работающая по такой схеме, одновременно вырабатывает и электрическую энергию, и теплоту. Такая станция называется теплоэлектроцентралью (ТЭЦ).
Пар с давлением 0,1 – 0,2 МПа используют для отопления и ГВС. Пар с давлением 0,15 – 0,5 МПа используют для технологических целей.
Термический КПД установки с противодавлением получается ниже, чем конденсационной установки, т. е. в электроэнергию превращается меньшая часть теплоты топлива. Зато общая степень использования этой теплоты становится значительно большей, чем в конденсационной установке. В идеальном цикле с противодавлением теплота, затраченная в котлоагрегате на получение пара (площадь 1-7-8-4-5-6), полностью используется потребителями. Часть ее (площадь 1-2-4-5-6) превращается в механическую или электрическую энергию, а часть (площадь 2-7-8-4) отдается тепловому потребителю в виде теплоты пара или горячей воды.
При установке турбины с противодавлением каждый килограмм пара совершает полезную работу и отдает тепловому потребителю количество теплоты
Степень использования теплоты в теплофикационной установке возрастает:
.
Мощность установки по выработке электроэнергии и ее тепловая мощность
пропорциональны расходу пара D, т. е. жестко связаны. Это неудобно на практике, ибо графики потребности в электроэнергии и теплоте почти никогда не совпадают.
Чтобы избавиться от такой жесткой связи, на станциях широко применяют турбины с регулируемым промежуточным отбором пара (рис. 1.30).
Рис. 1.30. Установка турбины с регулируемым отбором пара
Такая турбина состоит из двух частей: части высокого давления (ЧВД), в которой imp расширяется от давления p1 до давления ротб, необходимого для теплового потребителя, и части низкого давления (ЧЦД), где пар расширяется до давления р2 в конденсаторе. Через ЧВД проходит весь пар, вырабатываемый котлоагрегатом. Часть его Dотб (при давление ротб) отбирается и поступает к тепловому потребителю ТП. Остальной пар в количестве DK проходит через ЧНД в конденсатор К. Регулируя соотношения между Dотб и Dк, можно независимо менять как тепловую, так и электрическую нагрузки турбины с промежуточным отбором, чем и объясняется их широкое распространение на ТЭЦ. При необходимости предусматриваются два и более регулируемых отбора с разными параметрами пара.
Наряду с регулируемыми каждая турбина имеет еще несколько нерегулируемых отборов пара, используемых для регенеративного подогрева питательной воды, существенно повышающего термический КПД цикла.
Дата добавления: 2015-08-11 ; просмотров: 3319 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ
Введение в теплофикацию
Энергетикой называется система установок и устройств для преобразования первичных энергоресурсов в виды энергии, необходимые для народного хозяйства и населения, и передачи этой энергии от источников ее производства до объектов использования.
В промышленности и коммунально-бытовом секторе России широко используется теплота низкого (с температурой до 150 °С) и среднего (до 350 °С) потенциалов. На ее выработку затрачивается количество теплоты, которое превышает в несколько раз расход топлива на выработку электроэнергии и составляет около одной трети всех потребляемых в стране топливно-энергетических ресурсов.
Главным ресурсом для выработки электрической и тепловой энергии в стране в настоящее время служит в основном органическое топливо (природный газ, уголь, мазут).
Тепловое хозяйство страны развивается на основе непрерывно идущего процесса концентрации тепловых нагрузок в городах и промышленных районах.
Для организации рационального энергоснабжения страны особенно большое значение имеет теплофикация, являющаяся наиболее совершенным технологическим способом производства электрической и тепловой энергии и одним из основных путей снижения расхода топлива на выработку указанных видов энергии.
Под термином «теплофикация» понимается энергоснабжение на базе комбинированной, т.е. совместной, выработки электрической и тепловой энергии в одной установке.
Термодинамической основой теплофикации служит полезное использование отработавшей в тепловом двигателе теплоты, отводимой из теплосилового цикла.
Комбинированное производство электрической и тепловой энергии может быть реализовано на энергоустановках электрической мощностью, измеряемой сотнями МВт и тепловой мощностью в сотни ГДж/с (Гкал/ч), а также на установках мощностью в десятки (сотни) кВт и кДж/с (ккал/ч). Такой широкий диапазон мощностей теплофикационных установок и систем теснейшим образом связан с уровнем централизации теплоснабжения, который, в свою очередь, зависит от плотности тепловых нагрузок (тепловой мощности на единицу площади района теплоснабжения); вида топлива, на котором работают энергоустановки; от экологических требований, диктуемых состоянием воздушного бассейна; наличия избытков теплоты на промышленных предприятиях, расположенных на рассматриваемой территории и т.п.
В бывшем СССР и в России в период планового регулирования экономики наибольшее развитие получили достаточно крупные городские и промышленные теплофикационные системы, базирующиеся на централизованном теплоснабжении городов и промышленных узлов. Таким образом, при теплофикации в России было реализовано два основных принципа:
1) комбинированное (совместное) производство электрической и тепловой энергии, осуществляемое на ТЭЦ;
2) централизация теплоснабжения, т.е. передача теплоты от одного или нескольких источников, работающих на одну тепловую сеть, многочисленным тепловым потребителям.
Централизация теплоснабжения не является особенностью теплофикации и может быть реализована в системах теплоснабжения не только от ТЭЦ, но и от других источников теплоты, таких как промышленные, районные и квартальные котельные, от мусоросжигающих заводов и энергоустановок, утилизирующих избытки теплоты, образующиеся в технологических установках промпредприятий, и т.п.
Централизация теплоснабжения способствует благоустройству теплоснабжаемых районов, позволяет уменьшить трудозатраты на обслуживание теплового хозяйства городов и промышленности, облегчает использование низкосортного топлива и сбросной теплоты промышленности.
При централизованном теплоснабжении от котельных без комбинированной выработки электрической энергии на базе теплового потребления суммарный расход топлива на удовлетворение теплового и электрического потребления получается больше, чем при теплофикации. Теплофикация в сочетании с централизацией теплоснабжения является наиболее рациональным методом использования топливных ресурсов страны для тепло- и электроснабжения. Благодаря социальным, экономическим и экологическим преимуществам централизованная теплофикация стала одним из основных направлений развития энергетики нашей страны.
Технологические схемы систем теплофикации, теплоснабжения и отопления
С. А. Чистович, академик РААСН, президент Союза энергетиков Северо-Запада России
Академик С. А. Чистович является выдающимся специалистом, одним из создателей отечественной системы теплофикации и теплоснабжения, которая получила всемирное признание. В свой юбилей академик С. А. Чистович ведет активную научную и преподавательскую деятельность, в том числе и завершает работу над монографией «Автоматизированные системы теплофикации, теплоснабжения и отопления», выход в свет которой предполагается в конце года.
1. Централизованные и децентрализованные системы
В настоящее время наряду с системами централизованного теплоснабжения довольно широкое распространение получили децентрализованные системы.
Под децентрализованными автономными системами условно понимаются малые системы с установленной тепловой мощностью не более (20 гкал/г) 23 МВт.
Повышенный интерес к автономным источникам теплоты (и системам) в последние годы в значительной степени был обусловлен инвестиционно-кредитной политикой, т. к. строительство централизованной системы теплоснабжения требует от инвестора значительных единовременных капитальных вложений в источник, тепловые сети и внутренние системы здания, причем с неопределенным сроком окупаемости или практически на безвозвратной основе. При децентрализации возможно достичь не только снижения капитальных вложений за счет отсутствия тепловых сетей, но и переложить расходы на стоимость жилья (т. е. на потребителя). Именно этот фактор в последнее время и обусловил повышенный интерес к децентрализованным системам теплоснабжения для объектов нового строительства жилья. Организация автономного теплоснабжения позволяет осуществить реконструкцию объектов в городских районах старой и плотной застройки при отсутствии свободных мощностей в централизованных системах. Децентрализация на базе высокоэффективных теплогенераторов последних поколений (включая конденсационные котлы) с системами автоматического управления позволяет в полной мере удовлетворить запросы самого требовательного потребителя.
Перечисленные факторы в пользу децентрализации теплоснабжения привели к тому, что оно уже стало рассматриваться как безальтернативное техническое решение, лишенное недостатков. Поэтому необходимо подробно рассмотреть те проблемы, которые проявляются при более внимательном подходе к этому вопросу, проанализировать отдельные случаи применения децентрализованных систем, что позволит выбрать рациональное решение в комплексе.
Целесообразность применения таких систем по сравнению с централизованными системами должна оцениваться по ряду показателей:
– коммерческая (финансовая) эффективность, учитывающая финан-совые последствия реализации проекта для его непосредственных участников;
– экономическая эффективность, учитывающая связанные с проектом затраты и результаты, выходящие за пределы прямых финансовых интересов его участников и допускающие стоимостное измерение;
– затраты органического топлива – оценка по этому натуральному показателю должна учитывать как прогнозируемые изменения стоимости топлива, так и стратегию развития топливно-энергетического комплекса региона (страны);
– влияние выбросов в атмосферу на окружающую среду;
– энергетическая безопасность (для населенного пункта, города, региона).
При выборе источника автономного теплоснабжения необходимо учитывать целый ряд факторов. Прежде всего, это зона расположения объекта теплоснабжения, на который надо подать тепло (отдельное здание или группа зданий). Возможные зоны теплоснабжения можно разделить на четыре группы:
• зоны централизованного теплоснабжения от городских (районных) котельных;
• зоны централизованного снабжения от городских ТЭЦ;
• зоны автономного теплоснабжения;
• зоны смешанного теплоснабжения.
Существенное влияние на выбор источника теплоснабжения имеет характер застройки в месте расположения зданий (этажность и плотность застройки: м 2 /га, м 3 /га).
Важным фактором является состояние инженерной инфраструктуры (состояние основного технологического оборудования и тепловых сетей, степени их морального и физического износа и пр.).
Не меньшее значение имеет вид используемого в данном городе или населенном пункте топлива (газ, мазут, уголь, древесные отходы и пр.).
Определение экономической эффективности является обязательным при разработке проекта создания автономных систем для зданий, находящихся в зоне действия централизованного теплоснабжения.
Установка автономных источников в этом случае, будучи финансово привлекательной для инвесторов (непосредственных участников проекта), ухудшает показатели экономической эффективности системы централизованного теплоснабжения города:
– уменьшается подключенная тепловая нагрузка к городской котельной, что приводит к увеличению себестоимости отпускаемой тепловой энергии;
– в теплофикационных системах, кроме того, снижается доля произведенной электроэнергии по комбинированному циклу (на базе теплового потребления), что ухудшает энергетическую эффективность работы станции.
Определение затрат органического топлива позволяет путем непосредственных измерений объективно оценить энергетические потери во всей технологической цепи от источника до конечного потребителя.
Общий коэффициент полезного действия использования топлива в системе рассчитывается путем перемножения коэффициентов, характеризующих потери тепла во всех последовательно включенных элементах системы теплоснабжения. При комбинированном производстве (на ТЭЦ, в когенерационной установке) вводится коэффициент, учитывающий экономию тепла по сравнению с раздельным производством тепловой энергии в котельной, а электрической – на конденсационной электростанции.
Исходные зависимости для определения общего коэффициента полезного использования топлива для различных вариантов систем теплоснабжения приведены в табл. 1.
Таблица 1 Исходные зависимости для определения суммарного коэффициента полезного действия различных вариантов систем теплоснабжения | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Таблица 2 Технологические схемы управления в системах теплофикации и централизованного теплоснабжения | ||||||||||||||||||||||||||||
|
4. Пути совершенствования управления технологическими режимами систем теплоснабжения с распределенной генерацией тепловой и электрической энергии
Значительный физический износ трубопроводов и оборудования, морально устаревшая структура построения систем централизованного теплоснабжения выдвигают, наряду с задачей скорейшей замены изношенного оборудования, неотложную задачу оптимизации схемно-технических решений и режимов функционирования этих систем.
Учитывая крайне запущенное состояние систем теплоснабжения в России, полная их модернизация с целью обеспечения возможности работы в расчетном режиме с температурой теплоносителя 150 °С (с верхней срезкой графика при 130 °С) в течение ближайших 20–30 лет в большинстве городов практически неосуществима. Она потребует перекладки сотен тысяч километров тепловых сетей, замены изношенного оборудования на десятках тысяч тепловых источников и на сотнях тысяч абонентских теплопотребляющих установок.
На основании выполненного анализа состояния теплоснабжения в различных регионах страны предложения по оптимизации схем, технических решений и режимов работы систем централизованного теплоснабжения сводятся к следующему:
• ориентация систем централизованного теплоснабжения на покрытие базовой тепловой нагрузки с максимальной температурой теплоносителя на выходе из ТЭЦ (городской котельной) 100–110 °С;
• применение при реконструкции систем теплоснабжения энергосберегающих технологий, схемных решений, материалов и оборудования;
• строительство локальных пиковых источников тепла, максимально приближенных к системам теплопотребления;
• переоборудование районных городских котельных (в некоторых случаях и квартальных) в мини- и микро-ТЭЦ;
• применение бинарных (паро-газовых) термодинамических циклов для повышения эффективности работы городских ТЭЦ;
• создание АСУ теплоснабжением, включающих автоматизацию процессов производства, транспортировки, распределения и потребления тепловой энергии.
При ориентации систем теплоснабжения на покрытие базовой тепловой нагрузки значительно сокращаются капитальные затраты на реконструкцию тепловых сетей (за счет меньшего количества компенсаторов, возможности применения более дешевых и не подверженных коррозии труб из полимерных материалов и др.). На выделенные средства оказывается возможным реконструировать значительно больший объем тепловых сетей с повышением их надежности и уменьшением потерь при транспортировке теплоносителя.
Применение энергосберегающих технологий, материалов и оборудования дает возможность снизить удельное теплопотребление на 40–50 %, а именно:
– утепление ограждающих конструкций зданий;
– переход от вертикальных однотрубных систем отопления к горизонтальным с поквартирным учетом тепла;
– установка квартирных водосчетчиков в системах холодного и горячего водоснабжения, монтаж автоматизированных тепловых пунктов и др.
Таким образом, будет компенсировано влияние недополучения тепла от внешней сети в наиболее холодный период отопительного сезона.
Энергосбережение позволяет сэкономить не только значительное количество топливно-энергетических ресурсов, но и обеспечить условия теплового комфорта при «базовой» подаче тепла из тепловой сети.
Строительство пиковых (локальных) источников тепла, максимально приближенных к системам теплопотребления, позволит при низких значениях температур наружного воздуха повышать температуру теплоносителя, поступающего из тепловой сети, до требуемых для отапливаемых помещений параметров.
Дооснащение системы централизованного теплоснабжения пиковым источником резко повышает надежность ее работы. При аварии во внешней сети пиковый источник переводится в автономный режим работы с целью предотвращения замораживания системы отопления и продолжения функционирования объекта теплопотребления, расположенного на отключенном от тепловой сети участке. При профилактических отключениях теплоснабжения в летнее время здания, подключенные к пиковому источнику, также будут снабжаться теплом.
Строительство пиковых источников по существу будет означать переход от сложившейся в течение многих десятилетий в нашей стране централизованной системы теплоснабжения к «централизованно-локальной», обладающей более высокой надежностью и рядом других преимуществ.
В отличие от автономных и индивидуальных источников теплоснабжения (установленных в плотно застроенных кварталах северных городов), работающих круглогодично и наносящих вред окружающей среде (даже при работе на газе), суммарные выбросы в атмосферу от пиковых источников, которые вырабатывают в течение года только 5–10 % от всего годового отпуска тепла, будут ничтожно малы.
При современном уровне газовой отопительной техники централизация выработки собственной тепловой энергии экономического смысла, как правило, не имеет. КПД современных газовых теплогенераторов высок (92–94 %) и практически не зависит от их единичной мощности. Вместе с тем увеличение уровня централизации приводит к росту тепловых потерь при транспортировке теплоносителя. Поэтому крупные районные котельные оказываются неконкурентоспособными по сравнению с автономными источниками.
Резкое повышение эффективности районных котельных может быть достигнуто путем их реконструкции в мини-ТЭЦ, другими словами – путем дооснащения их электрогенерирующими агрегатами, переводом работы котельных в режим когенерации.
Известно, что эффективность работы когенерационных установок тем выше, чем большее число часов в году электроэнергия вырабатывается на базе теплового потребления. Круглогодичной тепловой нагрузкой в городах (без учета технологической нагрузки промышленных предприятий) является горячее водоснабжение. В связи с этим расчет мощности когенерационной установки (в системах централизованного теплоснабжения от котельных) на покрытие нагрузки горячего водоснабжения обеспечивает ее круглогодичную работу и, следовательно, наиболее эффективное использование. С другой стороны, удельные капитальные затраты на создание электрогенерирующих установок снижаются с увеличением их единичной мощности.
Поэтому для реконструкции котельных в мини-ТЭЦ в первую очередь целесообразно выбирать наиболее крупные из них с развитой нагрузкой горячего водоснабжения.
Существенное повышение эффективности работы городских ТЭЦ может быть достигнуто путем установки перед паротурбинной частью станции газовой турбины. Перевод работы паротурбинной ТЭЦ на парогазовый (бинарный) цикл повышает КПД по выработке электроэнергии с 35–40 до 50–52 %.
Устойчивая и эффективная работа системы централизованного теплоснабжения от городских ТЭЦ и районных котельных, преобразованных в мини-ТЭЦ, с пиковыми, работающими в автоматическом режиме теплоисточниками и автоматизированными тепловыми пунктами, невозможна без автоматизированной системы управления теплоснабжением. Поэтому создание АСУ является обязательным условием при реконструкции системы теплоcнабжения.
- чем декорировать скважину на даче фото
- адидас история бренда кратко