сквален в вакцинах что это
Сквален в вакцинах что это
Сквален – ациклический полиненасыщенный углеводород тритерпен (C30H50), который содержит 12 двойных связей. В очищенном виде сквален представляет собой бесцветную, почти без вкуса, прозрачную жидкость без существенного запаха. Название сквален произошло от латинского Squalus – акула, печень которой богата этим соединением. В частности, в печени черной колючей акулы (Etmopterus spinax), живущей обычно на глубинах 300–1000 м, содержится 75 % жира (у млекопитающих обычно около 5 %), в котором половину составляет растворенный в нем сквален. Кроме печени акул, сквален содержится в оливковом и амарантовом маслах, а также в маслах из зародышей пшеницы и рисовых отрубей 5.
Сквален является промежуточным звеном в биосинтезе холестерина, хотя превращается в холестерин всего 10 % его (7). Сквален входит также в состав секрета сальных желез кожи человека (до 12-14 %), благодаря чему легко всасывается и проникает внутрь организма, и, к тому же, ускоряет проникновение растворенных в нем веществ (8).
Сквален синтезируется в организме человека в результате сложных биохимических реакций, ведущих к образованию жизненно необходимых веществ, таких как коэнзим Q10, холестерин, желчные кислоты, витамин D, половые и другие стероидные гормоны. При нарушении процессов образования указанных биологически активных веществ развиваются нарушения обмена веществ, ведущие к развитию атеросклероза, сердечно-сосудистых и других заболеваний.
В нормальных аэробных условиях кислород используется только в самом конце процесса дыхания. Окисление субстрата происходит путем отнятия от него комплексом ферментов оксидоредуктаз электронов и протонов. В результате сложного многоступенчатого хода реакций они поступают в электронтранспортную цепь митохондрий, в конце которой с помощью цитохромоксидазы электроны взаимодействуют с кислородом и с участием протонов образуется вода (9-11). При недостатке и даже отсутствии кислорода как конечного акцептора электронов, то есть при гипоксии или аноксии, транспорт электронов по компонентам дыхательной цепи реализуется, но цитохромоксидаза не функционирует, и поток электронов может поступать на ряд полностью или частично окисленных соединений и ионов: фумарат, нитраты, сульфаты, карбонаты, сера, ионы железа. В зависимости от используемого акцептора электронов различают фумаратное, нитратное, сульфатное, серное, карбонатное, «железное» дыхание.
Этот процесс называется аноксическим эндогенным окислением или анаэробным дыханием. В результате него вода не образуется, но происходит окисление восстановленных коферментов, которые отняли протоны и электроны от субстрата. Это дает возможность возобновить весь процесс дыхания. Аноксическое эндогенное окисление широко распространено среди различных организмов и, в зависимости от их природы, может выполнять функцию или постоянного (облигатные анаэробы) или временного и дополнительного способа энергообеспечения (факультативные анаэробы). Такой временный способ выживания характерен и для аэробных организмов, оказавшихся в условиях кислородной недостаточности.
Так, в корневых системах многих растений при гипоксии и аноксии, вызванных затоплением посевов в результате длительных дождей или весенних паводков, развивается анаэробное дыхание с использованием в качестве акцепторов электронов нитратов. Установлено, что растения, произрастающие на полях, удобренных нитратными соединениями, переносят переувлажнение почвы и сопутствующую ему гипоксию лучше, нежели такие же растения без нитратной подкормки (9). Механизмы окисления органических субстратов при анаэробном дыхании, как правило, аналогичны механизмам окисления при аэробном дыхании. Чаще всего анаэробное дыхание осуществляется в клетках бактерий, хотя фумаратное дыхание (восстановление фумарата в электрон-транспортной цепи) обнаружено в клетках факультативно-анаэробных червей, гельминтов и даже млекопитающих. Фумаратное дыхание сравнивают с брожением, т.к. и донорами и акцепторами электронов в этом процессе являются органические вещества. Однако, электроны, восстанавливающие фумарат, пройдя часть пути по дыхательной цепи, обусловили создание протонного градиента на мембране, поэтому становится возможным окислительное фосфорилирование. Донорами электронов в анаэробном дыхании могут служить как органические, так и неорганические субстраты. Мы считаем, что таким субстратом может быть и сквален, играющий большую роль в метаболизме животных и человека (1-8,12-18) Будучи, как и фумарат, ненасыщенным соединением, он может быть акцептором электронов от восстановленных пиридиновых нуклеотидов вместо кислорода. При этом он превращается в насыщенное производное – сквалан, а восстановленные переносчики протонов и электронов окисляются. Аноксическим эндогенным окислением является также гидрирование двойных связей таких ненасыщенных соединений, как жирные кислоты фосфолипидов, поэтому при аноксии увеличивается доля их насыщенных компонентов [9, 10].
Процессы анаэробного дыхания относятся к древнейшим механизмам энергообмена, когда кислород на Земле отсутствовал. Вместе с тем, они оказываются важными для адаптации к временному недостатку или отсутствию кислорода в современных условиях обитания. Примечательно также, что адаптация к аноксии имеет общие черты у растений, микроорганизмов и животных, что представляет собой отражение сопряженной эволюции, при которой отбираются одни и те же наиболее эффективные метаболические механизмы, даже для далеко отстоящих друг от друга групп организмов (11).
Больше всего сквалена содержится в масле из зерна амаранта (до 8 %), что делает возможным рекомендовать использование этого растения для получения сквалена как еще одной альтернативы печени акулы. Некоторое количество его накапливается также в оливковом масле, в отрубях риса, в зародышах семян пшеницы при их прорастании. Значение их для метаболизма этих растений пока не ясно и требует экспериментальных исследований. Можно допустить, что семена этих растений испытывают дефицит кислорода при прорастании, и сквален, как антигипоксант, выполняет защитную функцию. В литературе довольно много также сведений о сквалене как об антиоксиданте. Это не вызывает сомнений, т.к. многие антиоксиданты являются тритерпенами. Хорошо известные антиоксиданты, такие как витамины Е и А, бета-каротин или сами являются терпенами, или содержат изопреновае группировки, характерные для терпенов. Возможно, что способность семян амаранта, богатых скваленом, сохранять высокую всхожесть в течение десятков лет, обусловлена именно его экстраординарными антиоксидантными свойствами. Однако это предположение нуждается в экспериментальном обосновании. Вероятность проявления свойств антигипоксанта и антиоксиданта одним и тем же соединением объясняется, по-видимому, тем, что в условиях гипо-аноксическолго стресса, он выполняет роль антигипоксанта, а при окислительном стрессе – антиоксиданта.
Прививка против гриппа и новые адьюванты: берегитесь
Источник: Елена Колс, M.D., доктор медицинских наук, профессор, занимается вопросами иммунологии, аллергии, психоневрологии и обмена веществ в лечении хронических заболеваний у взрослых и детей.
Материал представлен без редактирования. Мнение PAININFO может не совпадать с мнением автора материала.
Вакцинация «каждого мужчины, женщины и ребёнка» планировалась, по меньшей мере, несколько последних лет. Принятая в настоящее время концепция, распространению которой способствовал бывший Секретарь Министерства здравоохранения и социальных служб США (Health and Human Services Secretary) Томми Томпсоном, была выдвинута его предшественником, Майком Левитт. Конечно, Томпсон представлял себе массовые прививки оспенной вакциной. Но времена изменились, и прививка против гриппа в настоящее время является альтернативой универсальной вакцинации.
Тот факт, что прививки против гриппа неэффективна для каждой возрастной группы, вряд ли имеет значения для тех, кто продолжает способствовать их широкому применению. Многочисленные исследования, свидетельствующие о том, что прививки против гриппа неэффективны для всех возрастов, опубликованы в высоко уважаемых изданиях. Например, The Cochrane Collaboration выпустил в 2005г несколько серий статей с обзором публикаций, посвящённых эффективности прививок против гриппа. Ничего, кроме их бесполезности, обнаружено не было.
На основании обзора 51 исследования, в том числе 17 Российских публикаций, в которые было вовлечено более чем 260 000 детей, авторы «The Cochrane Collaboration» отметили: «Нет никаких доказательств того, что инъекции противогриппозной вакцины, сделанные детям в возрасте 6-23 месяцев, более эффективны, чем плацебо». Для здоровых взрослых результаты оказались подобными. Это следует из обзора 25 исследований, в которых общее число привитых составило более 60000 человек.
Еще раз: «The Cochrane Group» нашла, что вакцинация снижает риск заболевания гриппом не более, чем на 6% и уменьшает число дней нетрудоспособности менее, чем на один (0,16) день. Заключение: «Результаты проведенного обзора не дали оснований для поддержки универсальной иммунизации здоровых взрослых».
«The Cochrane Group», проанализировав 64 исследования, посвящённых проблеме эффективности противогриппозной вакцины для пожилых людей — группы, которая в данном случае считается целевой, отметила, что «100%-ная эффективность, рекламируемая пропагандистами ( противогриппозной вакцины ) нигде не была обнаружена. Всё, что вы наблюдаете — это рыночная норма, ответная реакция рынка на грипп, а научные данные отодвинуты на 4-5 место».
Вероятно, необходимо каким-то образом усилить действие противогриппозной вакцины, чтобы она работала лучше?
На протяжении недели в апреле 2006 г журнал The Washington Post публиковал рассуждения, не только расхваливающие использование противогриппозной вакцины, но и настойчиво проталкивающие идею о её новой улучшенной версии. «Зачем ждать пандемии гриппа, чтобы создать лучшую вакцину?», вопрошал журнал. Вслед за этим следовало заявление, что Национальный Институт Здоровья США ( National Institutes of Health ) планирует усилить вакцину «предназначенную для пожилых людей» путём добавления компонента, повышающего иммунное действие вакцины — так называемого адьюванта.
Адьювант это субстанция, добавляемая для увеличения выработки организмом антител при введении минимально возможного количества вируса (антигена). По определению, адьюванты — это «фармакологически активные препараты». Они не должны обладать активностью или токсичностью, но, вместе с тем, значительно усиливать действие других компонентов вакцины. Трудно объяснить, каким образом субстанция, которая по определению, является «фармакологически активной», в то же время описываться как «инертная и нее обладающая активностью или токсичностью».
Сквален стимулирует иммунный ответ чрезмерно и неспецифически. Опубликовано более чем два десятка прорецензированных научных сообщений десяти различных лабораторий США, Европы, Азии и Австралии, свидетельствующих о развитии аутоиммунных заболеваний у подопытных животных после инъекции адьюванта, основой которого является сквален. Убедительное объяснение механизма такой эффекта основано на концепции о «молекулярной мимикрии», в соответствии с которой происходит перекрестная реакция антител, вырабатываемых против сквалена адьюванта со скваленом, продуцируемым самим организмом. Распад собственного сквалена может привести к аутоиммунным болезням и болезням центральной нервной системы.
Сквален в MF 59 не единственная причина для беспокойства. Считается, что другой его компонент, Tween 80, является инертным, но это не так. Недавно проведенное исследование (дек 2005) обнаружило, что Tween 80 может вызвать анафилаксию, иногда фатальную реакцию, характеризующуюся острым падением кровяного давления, крапивницей, затруднением дыхания. Исследователи пришли к заключению, что такая сильновыраженная реакция не является типичным аллергическим ответом; её причина — серьёзные разрушения, произошедшие в иммунной системе.
Производитель вакцин Chiron уже использует MF 59 в своей противогриппозной вакцине Fluad ™, предназначенной для пожилых людей в Европе. Остаётся только ожидать, добьется ли Chiron права для использования этой адъювант содержащей вакцины в США.
Этой осенью противогриппозная вакцинация в первую очередь будут подлежать дети в возрасте от 6 месяцев до 5 лет. Ожидается, что в перечне вакцинируемых уже до 2007г окажется даже больше детей; начались дискуссии о принудительном вакцинировании здоровых детей в возрасте 5 — 9 лет, требование которого должно исходить от школ как обязательное условие.
В связи с сообщением о производстве в гриппозном сезоне 2006-2007 гг. 120 миллионов доз вакцины, готовьтесь к огромному давлению, направленному на привлечение каждого к вакцинированию этой осенью. Психологическая атака уже направлена на то, чтобы все были готовы закатать рукав — и охотно — для инъекции «пандемической» противогриппозной вакцины, когда она станет доступна.
Сохранение права отказаться будет становиться всё большей степени важным, особенно перед лицом концентрированного давления самопровозглашённых экспертов из CDC ( Центр контроля заболеваемости ) и WHO ( Всемирная организация здравоохранения, ВОЗ ). Но имейте в виду: вакцина «птичьего гриппа» не более эффективна, чем ежегодная противогриппозная вакцина. Даже хуже — существует высокая вероятность того, что она будет содержать MF-59.
Национальный Фармацевтический журнал
Войти на сайт
ВАКЦИНЫ ПРОТИВ COVID-19 И АДЪЮВАНТЫ, УЛУЧШАЮЩИЕ ИХ СВОЙСТВА.
Лилия Харисовна Каримова, к. х. н., Директор по развитию бизнеса ООО «Эр Ликид» (бизнес-направление фармацевтика и нутрицевтика SEPPIC)
Новый адъювант для профилактических вакцин компании SEPPIC
Различают несколько основных типов вакцин:
• вакцины на основе цельного (полногеномного) ослабленного вируса;
• инактивированные вакцины на основе полностью нежизнеспособного вируса;
• векторные вакцины;
• генетические вакцины (ДНК и РНК вакцины);
• субъединичные вакцины на основе отдельных компонентов патогена, таких как белки, пептиды или генетический материал (например, белковые или рекомбинантные вакцины). Разработчики из различных стран на основании накопленных знаний и имеющихся у них результатов и методов исследований выбирают для разработки тот тип вакцины, который считают наиболее действенным для обеспечения эффективной защиты людей от вируса SARS-CoV-2 (Рис.1).
На настоящий момент среди вакцин-кандидатов против COVID-19, зарегистрированных в списке ВОЗ, можно найти практически все из вышеназванных типов вакцин. Коротко напомним, что представляет собой каждый из них и чем они отличаются друг от друга.
ВЕКТОРНЫЕ ВАКЦИНЫ
Векторные вакцины – это также вакцины на основе живых вирусов, однако здесь есть небольшой, но очень важный нюанс: это вакцины на основе хорошо изученных и достаточно безобидных для человека вирусов («векторов» или вспомогательных транспортных вирусов) с встроенными в них фрагментами генома «злого вируса» (Рис. 3). В случае векторных вакцин в геном хорошо изученного и, в целом, безобидного вируса, например, аденовируса («вектора»), путём генетических модификаций встраивается небольшой ген – участок генома SARS-CoV-2. При вводе в организм такой векторной вакцины генетически модифицированные вспомогательные вирусы провоцируют такой же сильный иммунный ответ на белки-антигены SARS-CoV-2, как в случае «живой» полногеномной вирусной вакцины.
Преимущество указанных вакцин, по замыслу разработчиков, в той же высокой эффективности, что и у вакцин на основе живых ослабленных вирусов, но в большей управляемости в связи с достаточной изученностью и предсказуемостью «вектора»-носителя. Векторные вакцины начали разрабатываться и изучаться относительно недавно, поэтому к массовому применению вакцин этого типа ученые также подходят с должной и необходимой осторожностью.
ГЕНЕТИЧЕСКИЕ ВАКЦИНЫ
Еще два перспективных типа вакцин против COVID-19, разрабатываемые мировым сообществом, – вакцины на основе нуклеиновых кислот, а именно, ДНК- и РНК-вакцины. В случае ДНК-вакцины нуклеотидная последовательность, кодирующая антиген SARS-CoV-2, встраивается в вектор – бактериальную плазмиду – небольшую стабильную кольцевую молекулу ДНК, способную к автономной репликации. Сама по себе плазмида не вызывает нужного специфического иммунного ответа, для этого, собственно, в неё и вшивают гены иммуногенных белков. Указанный модифицированный геном направляется в клетку, встраивается в ее ядро и образует вирусный белок (антиген), индуцирующий иммунный ответ.
Согласно замыслу разработчиков, ДНК-вакцины не могут вызвать заражение SARS-Cov-2, однако иммунитет, который они обусловливают, должен оказаться таким же сильным, как в случае «живых» вакцин. Тем не менее, влияние ДНК-вакцин на живые организмы изучено еще в меньшей степени, чем влияние векторных вакцин, поэтому вряд ли в ближайшее время ДНК-вакцины будут допущены к массовому применению на людях. Также несколькими производителями вакцин в мире разрабатываются вакцины против COVID-19 на основе РНК. Это вакцины, которые содержат вирусную молекулу – матричную РНК (сокращенно мРНК). Как и в случае с ДНК-вакцинами, вирусная молекула представляет собой некий шаблон, с которого организмом напрямую считывается формула вирусного белка. Но в отличие от ДНК-вакцин, в этом случае мРНК не встраивается в клеточный геном. Липидные наночастицы с мРНК вводятся при вакцинации в организм, проникают через мембрану клетки-мишени внутрь нее и становятся шаблоном для синтеза вирусных белков-антигенов. Собственные клетки организма начинают синтезировать вирусные белки, вызывая иммунный ответ организма (Рис. 5).
В случае применения РНК-вакцины получается двойной иммунный ответ: с одной стороны, выработку антител вызывают вирусные белки, с другой стороны, сами липидные частицы с мРНК могут стимулировать иммунный ответ, так как «похожи на вирус» и воспринимаются организмом соответственно. Разработчики предполагают, что при вакцинации РНК-вакцинами из-за их «двойного действия» в организме быстро возникнет сильный и стойкий иммунитет.
В случае генетических вакцин преимуществом является их относительно быстрое и экономически выгодное производство: небольшую молекулу мРНК можно довольно быстро воссоздать, наработка нужного антигена обойдется недорого. Это делает вакцину доступной широким массам. Тем не менее иммунологи очень осторожно относятся к РНК-вакцинам, так как из-за малого периода их изучения никто не знает наверняка, как именно мРНК будет вести себя в живом, особенно в репродуктивном, организме.
СУБЪЕДИНИЧНЫЕ ВАКЦИНЫ
Одним из самых безопасных типов вакцин в настоящее время считаются субъединичные вакцины, то есть вакцины на основе белков или фрагментов вируса (Рис. 6), не имеющих в своем составе ни ДНК, ни РНК как, например, белковые вакцины.
Попадая в организм при вакцинации, смесь фрагментов вирусных белков-антигенов также способна вызывать иммунный ответ. При этом такая вакцина абсолютно безопасна, здесь невозможны мутации вируса, поэтому вызвать у человека заболевание COVID-19 такая вакцина не может. Недостатком субъединичных вакцин является довольно длительный и сложный процесс наработки и очистки – получить достаточное для вакцинации очищенное количество вирусного белка не так легко. Кроме того, в чистом виде белковые вакцины не вызывают сильный иммунный ответ, поэтому недостаточно эффективны. В связи с этим при разработке белковых вакцин очень важно:
а) усилить иммунный ответ, вводя в состав белковых вакцин соединения, усиливающие их эффективность (эти вещества называют адъюванты),
б) увеличить количество нарабатываемой вакцины также за счет добавления к наработанному вирусному белку существенного количества того же адъюванта.
ИНАКТИВИРОВАННЫЕ ВАКЦИНЫ
Наконец, мы подошли к еще одному безопасному и перспективному типу вакцин – инактивированным вакцинам. Здесь так же, как и в случае «живых» вакцин на основе ослабленного вируса используется цельный геном SARS-Cov-2, но в случае инактивированных вакцин вирус полностью деактивирован либо высокой температурой, либо дезинфицирующими составами, либо определенным видом излучения, что делает его совершенно нежизнеспособным. Этот инактивированный вирус никогда не сможет инфицировать клетку. Тем не менее по структуре «неживой» инактивированный вирус остается полным аналогом «живого» вируса и поэтому вызывает в организме иммунный ответ. Проблема в том, что в чистом виде инактивированные вирусы индуцируют существенно более низкий иммунный ответ, нежели живые, пусть даже и ослабленные вирусы. В связи с этим в составах инактивированных вакцин так же, как и в случае субъединичных вакцин используют адъюванты – вещества, которые значительно усиливают иммунный ответ, делая эти вакцины схожими по эффективности с живыми.
Основываясь на вышесказанном, мы склоняемся к выводу, что наиболее безопасными для человека являются субъединичные и инактивированные вакцины. Для повышения эффективности указанных безопасных вакцин до уровня более иммуногенных «живых», векторных или генетических вакцин необходимо применение в их составах современных адъювантов. Что же такое адъюванты и какова их роль в вакцинах?
АДЪЮВАНТЫ – КЛЮЧЕВАЯ СОСТАВЛЯЮЩАЯ ЭФФЕКТИВНЫХ И БЕЗОПАСНЫХ ВАКЦИН
Адъювант (от лат. adjuvans – «помогающий, поддерживающий») – соединение или комплекс веществ, используемых для усиления иммунного ответа при введении одновременно с антигеном.
Адъюванты на протяжении десятилетий применяются для улучшения иммунного ответа на вакцинные антигены. Включение адъювантов в состав вакцин направлено на усиление, ускорение и продление специфического иммунного ответа до желаемого уровня. Таким образом, адъюванты играют ключевую роль в получении эффективного и длительного иммунитета.
Использование адъювантов в вакцинах позволяет:
• Усилить краткосрочный иммунный ответ;
• Увеличить продолжительность иммунитета, то есть сократить частоту требуемых бустерных иммунизаций;
• Направить иммунный ответ (гуморальный или клеточный иммунитет);
• Уменьшить антигенную нагрузку при сохранении эффективности вакцины;
• Улучшить иммунный ответ у ослабленных или иммунокомпроментированных вакцинируемых лиц;
• Снизить себестоимость вакцины;
• Повысить стабильность вакцины.
Интерес к адъювантам для вакцин резко возрос в 2000-е годы. Ведущие фармацевтические компании-производители путем применения адъювантов разработали более эффективные и безопасные вакцины против гриппа.
В последние годы появляется все больше и больше новых вакцин-кандидатов как для профилактики инфекционных заболеваний, так и для терапии самых тяжелых заболеваний человечества. В связи с низкой иммуногенностью таких вакцин во многих случаях требуется введение в их состав адъювантов. Новые достижения в области аналитической биохимии, очистке макромолекул, технологии рекомбинантной ДНК, улучшенное понимание иммунологических механизмов и патогенеза заболевания позволили улучшить техническую основу разработки и применения адъювантов.
В настоящее время известно довольно много эффективных адъювантов, которые классифицируются по природе происхождения, механизму действия и физическим или химическим свойствам.
Так, в современных вакцинах широко применяются гели гидроксида алюминия, фосфаты алюминия или кальция, препараты на основе масляных эмульсий и ПАВ, дисперсные адъюванты, например, виросомы, структурные комплексы сапонинов и липидов и многие другие типы адъювантов.
Как уже упоминалось выше, наиболее эффективно и поэтому чаще всего адъюванты используются в следующих категориях вакцин:
• вакцины на основе белков (рекомбинантные субъединичные);
• инактивированные;
• векторные вакцины (для уменьшения дозы).
Для каждой вакцины адъювант подбирается таким образом, чтобы получить оптимальное соотношение эффективности указанной вакцины (получение сильного и продолжительного иммунного ответа) и ее безопасности для человека (минимальная реактогенность и отсутствие побочных эффектов).
К сожалению, немаловажным аспектом уже зарегистрированных в настоящее время адъювантов является их недоступность широкому кругу разработчиков. Практически все имеющиеся на настоящий момент современные адъюванты, применяемые в профилактических вакцинах, за исключением соединений алюминия, являются собственностью крупнейших фармацевтических компаний (см. табл. 2). В первую очередь, к ним относятся адъюванты для приготовления эмульсионных вакцин. Эти адъюванты на настоящий момент считаются наиболее перспективными в профилактических вакцинах, но остаются при этом и наименее доступными, так как были специально разработаны крупными биофармацевтическими компаниями исключительно для вакцин собственного производства.
Эти недоступные широкому кругу разработчиков адъюванты ведущих фармацевтических компаний отлично зарекомендовали себя в составах готовых вакцин указанных производителей. К примеру, эмульсионные адъюванты масло-в-воде MF59, AS03 и AF03 продемонстрировали высокую эффективность в вакцинах против гриппа. Сегодня вакцинами на их основе провакцинировано >120 миллионов человек, их профиль безопасности и иммуногенности тщательно и глубоко изучен и подтвержден на значительном количестве клинических испытаний (см. табл. 3).
НОВЫЙ ЭФФЕКТИВНЫЙ И БЕЗОПАСНЫЙ АДЪЮВАНТ GMP КАЧЕСТВА ДЛЯ ШИРОКОГО КРУГА РАЗРАБОТЧИКОВ ЧЕЛОВЕЧЕСКИХ ВАКЦИН
Франсуа Бертран, руководитель направления разработки и производства адъювантов компании Seppic, в своем выступлении по поводу выпуска адъюванта SEPIVAC TM SWE на мировой рынок сказал: «Указанная разработка иллюстрирует наше общее стремление привнести готовый эффективный и общедоступный адъювант в мировое сообщество разработчиков вакцин. Мы твердо верим, что SEPIVAC TM SWE ускорит разработку новых профилактических вакцин для людей и будет способствовать более здоровому будущему человечества во всем мире».