С помощью чего мы видим цвет
Про особенности цветовосприятия и иллюзии
В этой статье мы расскажем вам:
Особенности цветовосприятия: почему мы видим одинаковые цвета по-разному
— Слушай, а ты помнишь то платье.
Саша, муж Люси, увидел что-то на экране ноутбука и заинтересовался, поэтому даже не закончил вопрос.
Люся, конечно, помнила. Она увидела его на прошлых выходных. Длинное, в роскошном винном оттенке, сшитое словно на заказ по ее фигуре — Люсе оно безумно понравилось! Неужели Саша решил сделать ей подарок?!
— Представляешь, его цвет, оказывается, зависит от цвета фона! У разных людей мозг по-разному воспринимает обстановку, в которой сфотографировано платье, отсюда и разница в восприятии оттенка.
— Разница в восприятии оттенка? Саш, ты о чем?
— О платье. Сине-черном или бело-золотом. Помнишь, несколько лет назад весь интернет о нем спорил?
Знаменитое платье, вокруг которого было столько споров. А по-вашему, какое оно — бело-золотистое или сине-черное?
Как мы видим цвет
Человеческий глаз воспринимает цвета при помощи светочувствительных фоторецепторов, расположенных на поверхности сетчатки. Это так называемые палочки и колбочки.
Палочки активны только при низкой освещенности. Они воспринимают интенсивность света и отвечают за ночное зрение. Поэтому в темноте мы почти не различаем цвета, а видим окружающий мир в серо-черных тонах.
Колбочки ответственны за восприятие цвета. Глаза человека с нормальным цветовосприятием содержат около 6-7 млн колбочек. Лучше всего эти фоторецепторы работают на ярком свете.
Существует три типа колбочек:
Остальные цвета, например желтый или фиолетовый, воспринимаются при возбуждении сразу двух видов рецепторов. Когда мы видим белые предметы, в глазах активизируются три вида колбочек. Оттенки серого тоже воспринимаются всеми рецепторами сразу, но рецепторы при этом возбуждаются намного меньше, чем в случае с белым цветом. Если все три вида фоторецепторов неактивны, значит, человек смотрит на черный цвет.
При хорошем освещении человеческий глаз наиболее чувствителен к зеленым лучам. Хуже всего он воспринимает короткие световые волны, то есть те, которые отвечают за синий цвет. В сумерках ситуация меняется: мы хорошо различаем излучения синего оттенка, но практически не видим красный цвет.
Почему мы воспринимаем один и тот же цвет по-разному
Цветовосприятие человека может меняться — временно или навсегда. Причинами полной и частичной цветовой слепоты могут стать дальтонизм, возрастные изменения зрения. На цветовосприятие влияют освещение и даже настроение.
Это наследственная или приобретенная особенность зрения, при которой человек не различает или плохо различает цвета. Заболевание названо в честь Джона Дальтона, который в 1794 году впервые описал этот вид цветовой слепоты на основании собственных ощущений.
Так видят цвета люди с нормальным зрением и те, в чьих глазах не хватает определенного вида фоторецепторов
Дальтонизм связан с отсутствием или нехваткой одного или нескольких видов колбочек в сетчатке глаз. Чаще всего люди с этой патологией не различают красный и зеленый цвета. Реже встречается сине-желтый дальтонизм. В медицине зафиксированы также случаи полной цветовой слепоты.
У мужчин дальтонизм встречается чаще, чем у женщин, хотя передается он именно по женской линии.
Определить, есть ли у вас нарушения цветовосприятия, можно на сайтах Testframe и Testometrika, а также при помощи специальных мобильных приложений, таких как, например, Цветотест.
Пример теста на цветоощущение. Если вы видите числа в разноцветных кругах, у вас всё в порядке. Подробное описание тестов есть по ссылкам, указанным выше
С возрастом чувствительность фоторецепторов сетчатки снижается. Поэтому люди старше 60 лет видят мир не таким ярким и часто не различают оттенки. Например, они могут не ощущать разницы между голубым и синим или оранжевым и красным.
Нередко цветовая слепота становится следствием возрастных заболеваний глаз. При катаракте, например, человек видит мир в желтоватом оттенке: может казаться, что на темной улице, в скудном свете фонарей он видит лучше, чем солнечным днем. При этом зрение становится менее контрастным.
Похожие нарушения цветовосприятия могут наблюдаться при возрастной макулярной дегенерации (макулодистрофия), глаукоме и диабетической ретинопатии.
При катаракте хрусталик мутнеет и хуже пропускает свет, из-за чего человек теряет зрение и цветовую чувствительность
Возможно, если бы Люся ходила по магазинам в плохом настроении, то платье, о котором она вспоминала в начале статьи, показалось бы ей куда менее ярким. Ученые доказали: негативные эмоции заставляют нас видеть мир в тусклых тонах.
Американские исследователи провели эксперимент: одной группе добровольцев показали фрагменты из жизнеутверждающих комедий, второй — депрессивный короткометражный фильм. После просмотра всем испытуемым продемонстрировали несколько десятков карточек, окрашенных в блеклые цвета, и попросили определить базовый оттенок карточки: красный, зеленый, синий или желтый.
Выяснилось, что люди, которые только что смотрели комедии и были в хорошем расположении духа, безошибочно определили все оттенки. А вот те, кто был под впечатлением от мрачного фильма, часто допускали ошибки. Причем большая часть ошибок пришлась на синий и желтый цвета, в то время как оттенки зеленого и красного испытуемые практически не путали.
Картину «Звездная ночь» Винсент Ван Гог написал в клинике для душевнобольных, после конфликта с Гогеном и потери мочки левого уха. Основной цвет картины — синий.
Люди по-разному воспринимают цвета объектов в зависимости от источника света. Так, в оранжевом свете синий предмет кажется черным. В оранжевом нет синей части спектра, которая отражается от предмета, поэтому все лучи полностью поглощаются.
Рассматривая один и тот же предмет в искусственном и естественном освещении, мы видим разные оттенки:
Недавно в интернете обсуждали новую оптическую иллюзию — свитер, который меняет цвет при разном освещении. Его владелица сняла видео, как в разных комнатах свитер из фиолетового превращается в серо-зеленоватый. При этом большую часть времени вещь кажется серо-зеленоватой.
А как же платье, о котором говорил Саша? Почему одни видят его сине-черным, а другие — бело-золотым?
По словам нейробиологов, из-за яркого света на заднем плане снимка многие воспринимают синий цвет как неосвещенную сторону платья, и их мозг подсознательно заменяет голубые оттенки на белые. Аналогичным образом мозг преобразует черные кружевные полосы: они кажутся золотистыми.
На самом деле платье сине-черное. Посмотрите на правый верхний угол фотографии: он сильно засвечен. Именно этот чрезмерно яркий фон и создает оптическую иллюзию, поссорившую половину интернета.
Это так называемый принцип вычитания цвета фона. Прежде чем распознать оттенок предмета, мозг анализирует источник освещения и, в зависимости от принятого решения, вычитает из цветовой гаммы синий (и видит картинку в бело-золотых тонах) или желтый (в этом случае предметы окрашиваются в синий и черный).
О том самом платье даже есть статья в Википедии, где подробно описана иллюзия
Разные люди видят мир в разных тонах — это нормально.
Корректировать дефекты зрения можно с помощью контактных линз. Программа Лояльности Bausch + Lomb FRIENDS дает возможность экономить на них. Присоединитесь к программе и получайте бонусные баллы на покупку контактной оптики и средств для ухода за ней.
Лекция 3. Физика и биология цвета. Цветовой круг
Фиалки – бесцветные, ваша помада оттенка bordo – бесцветная и даже любимое желтое платье не имеет цвета. Мир вообще бесцветен и был бы таким в наших глазах, если бы не свет.
Свет – это излучение, которое испускает нагретое тело или вещество в возбужденном состоянии, а цвет – характеристика этого света. Предметы сами по себе бесцветны, а мы видим цвет, когда их поверхность отражает электромагнитные волны видимого диапазона, то есть свет. То, как человек воспринимает цвет, зависит от степени освещенности предмета, источника света, а также физиологических особенностей и психологического состояния каждого из нас в конкретный момент.
Физика цвета
Главный цветоприниматель человеческого организма – сетчатка глаза. Чтобы глаз увидел какой-либо предмет и его цвет, свет сначала должен упасть на этот предмет, отразиться от него, а затем попасть на сетчатку. Люди видят предметы, потому что они отражают свет, и различают цвета этих предметов в зависимости от характеристик их поверхности: какие лучи она поглощает, а какие отражает, отдавая сетчатке на анализ. Свет, поглощенный предметом, глаз увидеть не может.
Черная кожа, например, поглощает почти все излучение и кажется нам черной, потому что не отражает никакие волны. Снег, наоборот, равномерно отражает почти весь свет и поэтому выглядит для нас белым. Человек видит предмет в том цвете, лучи которого отражаются от поверхности и попадают на сетчатку. В случае с красной помадой на сетчатку попадут только лучи красного спектра, а остальные поглотятся, создав в сознании человека представление о красном цвете.
Человеческий глаз воспринимает электромагнитное излучение в узком диапазоне длин волн, от 380 до 740 нанометров. Этот видимый свет излучает фотосфера – тонкая оболочка Солнца, меньше 300 километров в толщину. В бесцветном для нашего глаза солнечном свете заключен весь видимый спектр волн, который при разложении дает цвета радуги: от красного до фиолетового. На уроках физики разложение света на спектр демонстрируют с помощью призмы, в жизни это можно увидеть на примере радуги, где функцию преломителя играют капли воды в воздухе.
Как мы различаем цвета
Сетчатка образована светочувствительными клетками двух типов – палочками и колбочками, которые называются так из-за своей формы. Колбочки дают нам возможность видеть мир в красках, так как они чувствительны к световым волнам различной длины в видимом спектре. Колбочки бывают трех типов: первые различают волны красно-оранжевого участка спектра, вторые – зеленого, третьи – сине-фиолетовые. Палочки более чувствительны к свету, поэтому вступают «в бой» в сумерках и темноте. Палочки не способны определить цвет предмета, но благодаря им мы не спотыкаемся в темной комнате.
Запомнить назначение колбочек и палочек легко с помощью ассоциации: колбочки – как химические емкости, в которых происходят реакции и получаются яркие вещества, а палочки – буквально палки-трости, которые мы использовали бы, окажись мы в полной темноте.
Цветовой круг
Цветовой круг – это способ представить весь видимый спектр света в условной форме круга. Секторы круга представляют цвета, размещенные в том порядке, который условно передает расположение их волн в спектре видимого света. Для связывания круга в его палитру добавлен пурпурный цвет (маджента), который соединяет крайние спектральные цвета (красный и синий) и получается из их условного смешения.
Свойствами цветового круга пользуются художники, физики, дизайнеры, инженеры, стилисты. Мы с помощью цветового круга можем разграничивать холодные и теплые цвета, дополняющие цвета, оттенки и аналогичные цвета. Эти понятие станут инструментом для дальнейшей работы с образом. Вкус, который многие считают врожденным, можно развивать, и правила сочетаемости цветов – отличное для этого начало.
→ Хроматический круг: теплые и холодные тона
Теплые и холодные тона расположены в разных частях цветового круга. К теплым относятся желтый, оранжевый и красный, к холодным – зеленые, синие и фиолетовые. Вопрос о каждом пограничном цвете (например, между желтым и зеленым) стоит рассматривать в каждом случае отдельно. Смешанный желто-зеленый цвет может относиться как к теплой, так и к холодной части круга. У стилистов также есть представление о том, что теплыми и холодными версиями обладают все цвета, кроме оранжевого (он всегда теплый). Даже голубой и зеленый могут быть теплыми, но это представление основано на психологическом восприятии цвета и ассоциациях, а не на объективных характеристиках цветового круга.
→ Хроматический круг: дополняющие цвета
Дополняющие цвета – это пара тонов, расположенных в круге напротив друг друга. Получить пару цветов можно, проведя прямую линию через центр круга. Получаем желтый + фиолетовый, синий + оранжевый, зеленый + красный.
→ Хроматический круг: аналогичные цвета
Аналогичные цвета расположены по соседству в одном цветовом семействе: желтый-оранжевый-красный, синий-голубой, зеленый-салатовый и так далее. Часто мы называем такие цвета оттенками, но это не совсем верное определение.
→ Хроматический круг: оттенки
Оттенки (фр. camaieu) – это варианты одного цвета, которые получаются путем добавления в него белой или черной краски. Увидеть визуальное представление оттенков можно на усовершенствованном круге с градацией цветов к белом в центре и черному – по краям. Таким представлением цвета пользуются дизайнеры, работая в Photoshop и аналогичных программах. Оттенки одного цвета – это градиентная шкала от бело-желтого до черного с желтым подтоном, от бело-голубого до иссиня-черного, где началом и концом шкалы являются белый и черный цвета.
Этих четырех свойств хроматического круга достаточно, чтобы создавать двух, трех и четырехцветные образы, не ошибаясь в оттенках. Благодаря правилам круга даже непривычные для вашего взгляда сочетания будут выглядеть гармонично.
В следующей лекции IFM мы расскажем о том, как выстраивать образ с использованием цветового круга и рассмотрим классические сочетания и современные цветовые тренды. Добавив к знаниям о цвете представление о стилях, а также информацию о типах фигур, линиях кроя и гармонизации силуэта, вы сможете самостоятельно создавать идеальные образы. Лекции IFM плюс немного практики – и никто не сможет оспорить наличие у вас вкуса. Ежедневно исследуя возможности своего гардероба, со временем вы обретете собственный стиль, самое ценное и неподвластное моде понятие. Следите за новостями Rendez-Vous Daily по хештегу #IFM4rendezvous, чтобы не пропустить полезные лекции.
Свет и цвет: основы основ
Мы окружены
Осознаем мы этого или нет, но мы находимся в постоянном взаимодействии с окружающим миром и принимаем на себя воздействие различных факторов этого мира. Мы видим окружающее нас пространство, постоянно слышим звуки от различных источников, ощущаем тепло и холод, не замечаем, что пребываем под воздействием естественного радиационного фона, а также постоянно находимся в зоне излучения, которое исходит от огромного количества источников сигналов телеметрии, радио и электросвязи. Почти всё вокруг нас испускает электромагнитное излучение. Электромагнитное излучение — это электромагнитные волны, созданные различными излучающими объектами – заряженными частицами, атомами, молекулами. Волны характеризуются частотой следования, длинной, интенсивностью, а также рядом других характеристик. Вот вам просто ознакомительный пример. Тепло, исходящее от горящего костра – это электромагнитная волна, а точнее инфракрасное излучение, причем очень высокой интенсивности, мы его не видим, но можем почувствовать. Врачи сделали рентгеновский снимок – облучили электромагнитными волнами, обладающими высокой проникающей способностью, но мы этих волн не ощутили и не увидели. То, что электрический ток и все приборы, которые работают под его действием, являются источниками электромагнитного излучения, вы все, конечно же, знаете. Но в этой статье я не стану рассказать вам теорию электромагнитного излучения и его физическую природу, я постараюсь более мене простым языком объяснить, что же такое видимый свет и как образуется цвет объектов, которые мы с вами видим. Я начал говорить про электромагнитные волны, чтобы сказать вам самое главное: Свет – это электромагнитная волна, которая испускается нагретым или находящимся в возбужденном состоянии веществом. В роли такого вещества может выступить солнце, лампа накаливания, светодиодный фонарик, пламя костра, различного рода химические реакции. Примеров может быть достаточно много, вы и сами можете привести их в гораздо большем количестве, чем я написал. Необходимо уточнить, что под понятием свет мы будем подразумевать видимый свет. Всё выше сказанное можно представить в виде вот такой картинки (Рисунок 1).
Рисунок 1 – Место видимого излучения среди других видов электромагнитного излучения.
На Рисунке 1 видимое излучение представлено в виде шкалы, которая состоит из «смеси» различных цветов. Как вы уже догадались – это спектр. Через весь спектр (слева направо) проходит волнообразная линия (синусоидальная кривая) – это электромагнитная волна, которая отображает сущность света как электромагнитного излучения. Грубо говоря, любое излучение – есть волна. Рентгеновское, ионизирующее, радиоизлучение (радиоприемники, телевизионная связь) – не важно, все они являются электромагнитными волнами, только каждый вид излучения имеет разную длину этих волн. Синусоидальная кривая является всего лишь графическим представлением излучаемой энергии, которая изменяется во времени. Это математическое описание излучаемой энергии. На рисунке 1 вы также можете заметить, что изображенная волна как бы немного сжата в левом углу и расширена в правом. Это говорит о том, что она имеет разную длину на различных участках. Длина волны – это расстояние между двумя её соседними вершинами. Видимое излучение (видимый свет) имеет длину волны, которая изменяется в пределах от 380 до 780nm (нанометров). Видимый свет — всего лишь звено одной очень длинной электромагнитной волны.
От света к цвету и обратно
Ещё со школы вы знаете, что если на пути луча солнечного света поставить стеклянную призму, то большая часть света пройдет через стекло, и вы сможете увидеть разноцветные полосы на другой стороне призмы. То есть изначально был солнечный свет — луч белого цвета, а после прохождения через призму разделился на 7 новых цветов. Это говорит о том, что белый свет состоит из этих семи цветов. Помните, я только что говорил, что видимый свет (видимое излучение) — это электромагнитная волна, так вот, те разноцветные полосы, которые получились после прохождения солнечного луча через призму – есть отдельные электромагнитные волны. То есть получаются 7 новых электромагнитных волн. Смотрим на рисунок 2.
Рисунок 2 – Прохождение луча солнечного света через призму.
Каждая из волн имеет свою длину. Видите, вершины соседних волн не совпадают друг с другом: потому что красный цвет (красная волна) имеет длину примерно 625-740nm, оранжевый цвет (оранжевая волна) – примерно 590-625nm, синий цвет (синяя волна) – 435-500nm., не буду приводить цифры для остальных 4-х волн, суть, я думаю, вы поняли. Каждая волна – это излучаемая световая энергия, то есть красная волна излучает красный свет, оранжевая – оранжевый, зеленая – зеленый и т.д. Когда все семь волн излучаются одновременно, мы видим спектр цветов. Если математически сложить графики этих волн вместе, то мы получим исходный график электромагнитной волны видимого света – получим белый свет. Таким образом, можно сказать, что спектр электромагнитной волны видимого света – это сумма волн различной длины, которые при наложении друг на друга дают исходную электромагнитную волну. Спектр «показывает из чего состоит волна». Ну, если совсем просто сказать, то спектр видимого света – это смесь цветов, из которых состоит белый свет (цвет). Надо сказать, что и у других видов электромагнитного излучения (ионизирующего, рентгеновского, инфракрасного, ультрафиолетового и т.д.) тоже есть свои спектры.
Любое излучение можно представить в виде спектра, правда таких цветных линий в его составе не будет, потому, как человек не способен видеть другие типы излучений. Видимое излучение – это единственный вид излучений, который человек может видеть, потому-то это излучение и назвали – видимое. Однако сама по себе энергия определенной длины волны не имеет никакого цвета. Восприятие человеком электромагнитного излучения видимого диапазона спектра происходит благодаря тому, что в сетчатке глаза человека располагаются рецепторы, способные реагировать на это излучение.
Но только ли путем сложения семи основных цветов мы можем получить белый цвет? Отнюдь. В результате научных исследований и практических экспериментов было установлено, что все цвета, которые способен воспринимать человеческий глаз, можно получить смешиванием всего лишь трех основных цветов. Три основных цвета: красный, зеленый, синий. Если с помощью смешивания этих трех цветов можно получить практически любой цвет, значит можно получить и белый цвет! Посмотрите на спектр, который был приведен на рисунке 2, на спектре четко просматриваются три цвета: красный, зеленый и синий. Именно эти цвета лежат в основе цветовой модели RGB (Red Green Blue).
Проверим как это работает на практике. Возьмем 3 источника света (прожектора) — красный, зеленый и синий. Каждый из этих прожекторов излучает только одну электромагнитную волну определенной длины. Красный – соответствует излучению электромагнитной волны длиной примерно 625-740nm (спектр луча состоит только из красного цвета), синий излучает волну длиной 435-500nm (спектр луча состоит только из синего цвета), зеленый – 500-565nm (в спектре луча только зеленый цвет). Три разных волны и больше ничего, нет никакого разноцветного спектра и дополнительных цветов. Теперь направим прожектора так, чтобы их лучи частично перекрывали друг друга, как показано на рисунке 3.
Рисунок 3 — Результат наложения красного, зеленого и синего цветов.
Посмотрите, в местах пересечения световых лучей друг с другом образовались новые световые лучи – новые цвета. Зеленый и красный образовали желтый, зеленый и синий – голубой, синий и красный — пурпурный. Таким образом, изменяя яркость световых лучей и комбинируя цвета можно получить большое многообразие цветовых тонов и оттенков цвета. Обратите внимание на центр пересечения зеленого, красного и синего цветов: в центре вы увидите белый цвет. Тот самый, о котором мы недавно говорили. Белый цвет – это сумма всех цветов. Он является «самым сильным цветом» из всех видимых нами цветов. Противоположный белому – черный цвет. Черный цвет – это полное отсутствие света вообще. То есть там, где нет света — там мрак, там всё становится черным. Пример тому — иллюстрация 4.
Рисунок 4 – Отсутствие светового излучения
Я как-то незаметно перехожу от понятия свет к понятию цвет и вам ничего не говорю. Пора внести ясность. Мы с вами выяснили, что свет – это излучение, которое испускается нагретым телом или находящимся в возбужденном состоянии веществом. Основными параметрами источника света являются длина волны и сила света. Цвет – это качественная характеристика этого излучения, которая определяется на основании возникающего зрительного ощущения. Конечно же, восприятие цвета зависит от человека, его физического и психологического состояния. Но будем считать, что вы достаточно хорошо себя чувствуете, читаете эту статью и можете отличить 7 цветов радуги друг от друга. Отмечу, что на данный момент, речь идет именно о цвете светового излучения, а не о цвете предметов. На рисунке 5 показаны зависимые друг от друга параметры цвета и света.
Рисунки 5 и 6– Зависимость параметров цвета от источника излучения
Существуют основные характеристики цвета: цветовой тон (hue), яркость (Brightness), светлость (Lightness), насыщенность (Saturation).
– Это основная характеристика цвета, которая определяет его положение в спектре. Вспомните наши 7 цветов радуги – это, иначе говоря, 7 цветовых тонов. Красный цветовой тон, оранжевый цветовой тон, зелёный цветовой тон, синий и т.д. Цветовых тонов может быть довольно много, 7 цветов радуги я привел просто в качестве примера. Следует отметить, что такие цвета как серый, белый, черный, а также оттенки этих цветов не относятся к понятию цветовой тон, так как являются результатом смешивания различных цветовых тонов.
– Характеристика, которая показывает, насколько сильно излучается световая энергия того или иного цветового тона (красного, желтого, фиолетового и т.п.). А если она вообще не излучается? Если не излучается – значит, её нет, а нет энергии — нет света, а там где нет света, там черный цвет. Любой цвет при максимальном снижении яркости становится черным цветом. Например, цепочка снижения яркости красного цвета: красный — алый — бордовый — бурый — черный. Максимальное увеличение яркости, к примеру, того же красного цвета даст «максимально красный цвет».
– Степень близости цвета (цветового тона) к белому. Любой цвет при максимальном увеличении светлости становится белым. Например: красный — малиновый — розовый — бледно-розовый — белый.
– Степень близости цвета к серому цвету. Серый цвет является промежуточным цветом между белым и черным. Серый цвет образуется путем смешивания в равных количествах красного, зеленого, синего цвета с понижением яркости источников излучения на 50%. Насыщенность изменяется непропорционально, то есть понижение насыщенности до минимума не означает, что яркость источника будет снижена до 50%. Если цвет уже темнее серого, при понижении насыщенности он станет ещё более темным, а при дальнейшем понижении и вовсе станет черным цветом.
Такие характеристики цвета как цветовой тон (hue), яркость (Brightness), и насыщенность (Saturation) лежат в основе цветовой модели HSB (иначе называемая HCV).
Для того чтобы разобраться в этих характеристиках цвета, рассмотрим на рисунке 7 палитру цветов графического редактора Adobe Photoshop.
Рисунок 7 – Палитра цветов Adobe Photoshop
Если вы внимательно посмотрите на рисунок, то обнаружите маленький кружочек, который расположен в самом верхнем правом углу палитры. Этот кружочек показывает, какой цвет выбран на цветовой палитре, в нашем случае это красный. Начнем разбираться. Сначала посмотрим на числа и буквы, которые расположены в правой половине рисунка. Это параметры цветовой модели HSB. Самая верхняя буква – H (hue, цветовой тон). Он определяет положение цвета в спектре. Значение 0 градусов означает, что это самая верхняя (или нижняя) точка цветового круга – то есть это красный цвет. Круг разделен на 360 градусов, т.е. получается, в нем 360 цветовых тонов. Следующая буква – S (saturation, насыщенность). У нас указано значение 100% — это значит, что цвет будет «прижат» к правому краю цветовой палитры и имеет максимально возможную насыщенность. Затем идет буква B (brightness, яркость) – она показывает, насколько высоко расположена точка на палитре цветов и характеризует интенсивность цвета. Значение 100% говорит о том, что интенсивность цвета максимальна и точка «прижата» к верхнему краю палитры. Буквы R(red), G(green), B(blue) — это три цветовых канала (красный, зеленый, синий) модели RGB. В каждом в каждом из них указывается число, которое обозначает количество цвета в канале. Вспомните пример с прожекторами на рисунке 3, тогда мы выяснили, что любой цвет может быть получен путем смешивания трех световых лучей. Записывая числовые данные в каждый из каналов, мы однозначно определяем цвет. В нашем случае 8-битный канал и числа лежат в диапазоне от 0 до 255. Числа в каналах R, G, B показывают интенсивность света (яркость цвета). У нас в канале R указано значение 255, а это значит, что это чистый красный цвет и у него максимальная яркость. В каналах G и B стоят нули, что означает полное отсутствие зеленого и синего цветов. В самой нижней графе вы можете увидеть кодовую комбинацию #ff0000 — это код цвета. У любого цвета в палитре есть свой шестнадцатиричный код, который определяет цвет. Есть замечательная статья Теория цвета в цифрах, в которой автор рассказывает как определять цвет по шестнадцатеричному коду.
На рисунке вы также можете заметить перечеркнутые поля числовых значений с буквами «lab» и «CMYK». Это 2 цветовых пространства, по которым тоже можно характеризовать цвета, о них вообще отдельный разговор и на данном этапе незачем вникать в них пока не разберетесь с RGB.
Можете открыть цветовую палитру Adobe Photoshop и поэксперовать со значением цветов в полях RGB и HSB. Вы заметите, что изменение числовых значений в каналах R, G, и B приводит к изменению числовых значений в каналах H, S, B.
Цвет объектов
Пора поговорить о том, как так получается, что окружающие нас предметы принимают свой цвет, и почему он меняется при различном освещении этих предметов.
Объект можно увидеть, только если он отражает или пропускает свет. Если же объект почти полностью поглощает падающий свет, то объект принимает черный цвет. А когда объект отражает почти весь падающий свет, он принимает белый цвет. Таким образом, можно сразу сделать вывод о том, что цвет объекта будет определяться количеством поглощенного и отраженного света, которым этот объект освещается. Способность отражать и поглощать свет определятся молекулярной структурой вещества, иначе говоря — физическими свойствами объекта. Цвет предмета «не заложен в нем от природы»! От природы в нем заложены физические свойства: отражать и поглощать.
Цвет объекта и цвет источника излучения неразрывно связаны между собой, и эта взаимосвязь описывается тремя условиями.
— Первое условие: Цвет объект может принимать только при наличии источника освещения. Если нет света, не будет и цвета! Красная краска в банке будет выглядит черной. В темной комнате мы не видим и не различаем цветов, потому что их нет. Будет черный цвет всего окружающего пространства и находящихся в нем предметов.
— Второе условие: Цвет объекта зависит от цвета источника освещения. Если источник освещения красный светодиод, то все освещаемые этим светом объекты будут иметь только красные, черные и серые цвета.
— И наконец, Третье условие: Цвет объекта зависит от молекулярной структуры вещества, из которого состоит объект.
Зеленая трава выглядит для нас зеленой, потому что при освещении белым светом она поглощает красную и синюю волну спектра и отражает зеленую волну (Рисунок 8).
Рисунок 8 – Отражение зеленой волны спектра
Бананы на рисунке 9 выглядят желтыми, потому что они отражают волны, лежащие в желтой области спектра (желтую волну спектра) и поглощает все остальные волны спектра.
Рисунок 9 – Отражение желтой волны спектра
Собачка, та что изображена на рисунке 10 – белая. Белый цвет – результат отражения всех волн спектра.
Рисунок 10 – Отражение всех волн спектра
Цвет предмета – это цвет отраженной волны спектра. Вот так предметы приобретают видимый нами цвет.
В следующей статье речь пойдет о новой характеристике цвета — цветовой температуре.